SECTION 23 0010 – COORDINATION DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 COORDINATION DRAWINGS

- A. Coordination drawings shall be prepared, and submitted for review by the Designer, indicating structural and other miscellaneous steel, and HVAC, Plumbing, Fire Protection, Electrical, and General work which must be carefully coordinated by all trades to minimize space conflicts. These drawings shall be submitted for review prior to any trade starting work which is in close proximity to work of any other trade(s).
- B. The Contractor shall be responsible for the preparation and submission of the coordination drawings. Specific efforts required include:
 - Initiation of the drawings including furnishing of reproducible sheet which show Floor Plans with structural steel and HVAC elements.
 - 2. Coordination/communication with other trades during the preparation of the coordination drawings.
 - Minimizing future conflicts between trades.
- C. Each subcontractor shall be responsible for showing the elements of their work on the coordination drawings. The HVAC Contractor is only responsible for showing elements relative to his work and the conflicts. These coordination drawings shall represent a collective effort by all contractors to avoid space conflicts and expedite the work of all trades. Work may not proceed until the coordination drawings have been reviewed for general conformance by the Designer.
- D. Prepare coordination drawings to a scale of ¼" = 1"-0" or larger; detailing major elements, components, and systems of HVAC, plumbing, fire protection, and electrical equipment and materials in relationship with other systems, installations, and building structural steel and components. Dimension elements and components of the systems from column lines and indicate elevations of elements and components relative to the finished floor. Indicate location where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work. At minimum, the coordination drawings shall include (but not necessarily be limited to) the following:
 - 1. Indicate all structural and miscellaneous steel.
 - 2. Indicated the proposed location of all ductwork and air distribution equipment including terminal units and diffusers.
 - 3. Indicate the proposed location of piping services including:
 - a. Chilled water piping.
 - b. Heating hot water piping.
 - c. Domestic hot and cold water piping.
 - d. Waste and vent piping.
 - e. Roof drain/rain leader piping.
 - f. Sprinkler piping and sprinkler heads.
 - g. Cable trays.
 - h. Wireways.
 - 4. Indicate the proposed location of electrical conduits and all light fixtures.
 - 5. Indicate clearances for installing and maintaining insulation.
 - 6. Indicate clearances for servicing and maintaining equipment, including tube removal, filter removal, and space for equipment disassembly required for

- periodic maintenance.
- 7. Indicate major equipment, equipment support details, and connections.
- 8. Indicate sizes and locations of required concrete housekeeping pads and bases.
- 9. Indicate all fire-rated walls and partitions.
- 10. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.
- 11. Prepare separate floor plans, sections, and details as required to indicate all piping and conduits routed through structural steel openings.
- 12. Prepare separate reflected ceiling plans to coordinate and integrate installations of air outlets and inlets, light fixtures, communication systems components, sprinkler heads, and other ceiling-mounted items.
- 13. It is not required (unless otherwise noted above) to indicate piping and conduit 1-1/4 inches in diameter and smaller on the coordination drawings. However, the respective trade installing such elements assumes responsibility for coordinating and installing said elements in a manner that does not conflict with other elements shown on the coordination drawings.
- E. Upon completion of the coordination drawings, a representative of each trade contractor shall be required to sign each sheet of the coordination drawings. Signature shall attest to a diligent review of the coordination drawings and agreement to alleviate/resolve any future space conflicts at no cost to the Owner.
- F. Failure by the contractor who is in violation of the coordination drawings to move his work, or reimburse the affected contractor or the Owner, will result in the monetary amount required to resolve the conflict to be deducted from his contract.
- G. Coordination drawings must be complete and submitted to the Designer for review within one month following the Date of Commencement. The Designer's review shall not denote responsibility of the content of the coordination drawings on his part, but to check for general conformity and requirements of the Contract Documents.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

SECTION 23 0500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - Sleeves.
 - 2. Escutcheons.
 - 3. Equipment installation requirements common to equipment sections.
 - 4. Concrete bases.
 - 5. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Non-Destructive Inspection and Testing: A/E shall visually inspect pipe welds. Based on visual inspections, upon order of the A/E, non-destructive testing of selected pipe welds shall be performed by a qualified testing agency, at the expense of the Owner, using one of the following methods selected by the A/E. The welds inspected shall be selected randomly, but the selection shall include an examination of welds made by each welding operator or welder.
 - 1. Radiographic testing in accordance with ASTM E 94:
 - a. Make identification of defects by comparing radiographs to reference radiographs in ASTM E 390.
 - b. Film shall positively and properly identify as to member being inspected, location of weld, and location of film on weld.
 - Stamp identification on steel so film may be easily identified and matched to identification mark

- 2. Ultrasonic testing in accordance with ASTM E 164:
 - a. Size of defects will be determined by relating amplitude of oscilloscope traces to hole in ASTM reference weldment.
 - b. Diameter of reference holes shall be 3/32-inch.
 - c. Weld defects which are cause for rejection include cracks, lack of fusion, incomplete penetration, porosity, or slag inclusions which produce reflections equal to or greater than 80 percent of reference hole reflection and have linear dimensions as indicated by transducer movement exceeding 1/4-inch for material thickness up to and including 3/4-inch.
- C. Correction of Defective Welds: If random testing reveals that any welds fail to meet minimum quality requirements, an additional 10 percent of the welds in that same group shall be inspected at the Contractor's expense. If all of the additional welds inspected meet the quality requirements, the entire group of welds represented shall be accepted and the defective welds shall be repaired. If any of the additional welds inspected also fail to meet the quality requirements, that entire group of welds shall be rejected. At the Contractor's option, the rejected welds shall be removed and the joints rewelded or the rejected welds shall be 100 percent tested as hereinbefore specified and all defective weld areas removed and rewelded.
- D. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements. No additional cost will be allowed for such changes and substitutions.

PART 2 - PRODUCTS

- 2.1 PIPE, TUBE, AND FITTINGS
 - A. Use type L copper piping for all condensate drain piping

2.2 JOINING MATERIALS

- A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- B. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.

2.3 SLEEVES

A. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

2.4 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - Finish: Polished chrome-plated
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated

2.5 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION – PRE-INSTALLATION MEETINGS

A. Contractor shall attend pre-installation meetings with the Engineer, Architect and Owner prior to setting any interior devices such as air distribution devices, thermostats, exhaust fans and exterior equipment including disconnects, packaged equipment, louvers/fans etc. Any installed items not approved by the above parties will be subject to removal and relocation. Pre-installation meetings will be scheduled by the Contractor in a manner that allows sufficient time for all parties to attend.

3.2 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.3 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- B. Field Welding: Comply with AWS D1.1.

3.5 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.6 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

SECTION 23 0513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Provide with shaft grounding rings

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Premium Efficiency, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.

- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F Code Letter Designation:
 - Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multi-speed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
 - 5. Provide with shaft grounding rings.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Capacitor start, inductor run.
 - 3. Capacitor start, capacitor run.
- B. Multispeed Motors: Electronically Commutated (ECM).
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

SECTION 23 0529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Fastener systems.
 - 5. Equipment supports.

1.3 DEFINITIONS

A. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Retain a registered engineer to design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Powder-actuated fastener systems.
 - 3. Shop Drawings: Signed and sealed by a qualified professional engineer showing seismic-restraint hangers and supports for piping and equipment
- B. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.3 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.5 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

- 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

SECTION 23 0548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Elastomeric isolation pads.
- 2. Restrained elastomeric isolation mounts.
- 3. Restrained-spring isolators.
- 4. Pipe-riser resilient supports.
- 5. Resilient pipe guides.
- 6. Elastomeric hangers.
- 7. Spring hangers.
- 8. Snubbers.
- 9. Restraint channel bracings.
- 10. Restraint cables.
- 11. Seismic-restraint accessories.
- 12. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 - 1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

- Welding certificates.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 116mph
 - 2. Building Classification Category: IV.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction, and 45 degrees either side of normal.
- B. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: D.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: IV
 - a. Component Importance Factor: 1.5.
 - b. Component Response Modification Factor: 3.5.
 - c. Component Amplification Factor: 2.5.
 - 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 16.9%.
 - 4. Design Spectral Response Acceleration at 1.0-Second Period: 12.5%.

2.2 ELASTOMERIC ISOLATION PADS

- A. Elastomeric Isolation Pads:
 - 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 - 2. Size: Factory or field cut to match requirements of supported equipment.
 - 3. Pad Material: Oil and water resistant with elastomeric properties.
 - 4. Surface Pattern: Waffle pattern.
 - 5. Infused nonwoven cotton or synthetic fibers.
 - 6. Load-bearing metal plates adhered to pads.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

- A. Restrained Elastomeric Isolation Mounts:
 - 1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 - 1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 - a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig (3447 kPa).
 - b. Top plate with threaded mounting holes.
 - c. Internal leveling bolt that acts as blocking during installation.
 - 2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.

- 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.5 PIPE-RISER RESILIENT SUPPORT

- A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- (13-mm-) thick neoprene.
 - 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - 2. Maximum Load Per Support: 500 psig (3.45 MPa)on isolation material providing equal isolation in all directions.

2.6 RESILIENT PIPE GUIDES

- A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- (13-mm-) thick neoprene.
 - 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.7 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:.
 - 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.8 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 - 8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.9 SNUBBERS

A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

- 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
- 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
- 3. Maximum 1/4-inch (6-mm) air gap, and minimum 1/4-inch- (6-mm-) thick resilient cushion.

2.10 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.11 RESTRAINT CABLES

A. Restraint Cables: ASTM A603 galvanized steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.12 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
- B. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- C. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- D. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.2 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

- C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- D. Equipment Restraints:
 - 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
 - 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

E. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of [40 feet (12 m) o.c., and longitudinal supports a maximum of [80 feet (24 m) o.c.
- 3. Brace a change of direction longer than 12 feet (3.7 m).
- F. Install cables so they do not bend across edges of adjacent equipment or building structure.
- G. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.
- H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- K. Drilled-in Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 232113 "Hydronic Piping" for piping flexible connections.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

- 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post connection testing has been approved), and with at least seven days' advance notice.
- 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
- 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
- 5. Test to 90 percent of rated proof load of device.
- 6. Measure isolator restraint clearance.
- 7. Measure isolator deflection.
- 8. Verify snubber minimum clearances.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

SECTION 23 0553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following mechanical identification materials and their installation:
 - 1. Equipment nameplates.
 - 2. Equipment markers.
 - 3. Equipment signs.
 - 4. Access panel and door markers.
 - 5. Pipe markers.
 - 6. Stencils.
 - 7. Valve tags.
 - 8. Valve schedules.
 - 9. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME A13.1, "Scheme for the Identification of Piping Systems," for letter size, length of color field, colors, and viewing angles of identification devices for piping.

1.5 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with location of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

- A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 - 1. Data:
 - a. Manufacturer, product name, model number, and serial number.

- b. Capacity, operating and power characteristics, and essential data.
- c. Labels of tested compliances.
- 2. Location: Accessible and visible.
- 3. Fasteners: As required to mount on equipment.
- B. Equipment Markers: Engraved phenolic plates white background and black lettering securely fastened to the equipment with sheet metal screws.
 - 1. Terminology: Match schedules as closely as possible.
 - 2. Data:
 - a. Name and plan number.
 - b. Equipment service.
 - c. Design capacity.
 - d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 - 3. Size: 2-1/2 by 4 inches (64 by 100 mm) for control devices, dampers, and valves; 4-1/2 by 6 inches (115 by 150 mm) for equipment.
- C. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, Engraved phenolic plates white background and black lettering. Provide holes for mechanical fastening.
 - 1. Data: Instructions for operation of equipment and for safety procedures.
 - 2. Engraving: Manufacturer's standard letter style, of sizes and with terms to match equipment identification.
 - 3. Thickness: 1/16 inch (1.6 mm) for units up to 20 sq. in. (130 sq. cm) or 8 inches (200 mm) in length, and 1/8 inch (3.2 mm) for larger units.
 - 4. Fasteners: Self-tapping, stainless-steel sheet-metal screws...
- D. Access Panel and Door Markers: 1/16-inch- (1.6-mm-) thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch (3.2-mm) center hole for attachment.
 - 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

2.2 PIPING IDENTIFICATION DEVICES

- A. Completely paint piping systems in mechanical rooms with the applicable colors listed below with appropriate self-sticking or strap-on identifications and arrows indicating direction of flow.
- B. On straight runs of piping, space marking no further than 30 feet apart; and with pretentioned Plastic Pipe Markers near each valve, pressure reducing valve, heat exchanger, etc.
- C. Where pipe passes through walls or floors, mark near the penetration on both sides. Provide markings at each directional change of all piping systems.
- D. Mechanical room and outdoor pipe color and the colors of bands are as follows:

Service	Marker Wording	Lettering Color	Background Color	Pipe/Covering Color
Domestic cold water	DOMESTIC COLD WATER	White	Green	Blue
Domestic hot water	DOMESTIC HOT WATER	Black	Yellow	Lt. Red
Domestic hot water recircu-	DOMESTIC HOT WATER			
lating	RETURN	Black	Yellow	Orange
Domestic make-up water	MAKE-UP WATER	White	Green	Blue
	NON-POTABLE MAKE-UP			
Make-up water non-potable	WATER	Black	Yellow	Purple
Sanitary drain	SANITARY DRAIN	White	Green	*
Storm drain, incl. roof drains	STORM DRAIN	White	Green	*
Plumbing vent	VENT	White	Green	*
Condensate drain	DRAIN	White	Green	*

^{*} Pipe not painted unless exposed

Color	Sherwin Williams Industrial & Marine Coatings Paint Number	Sherwin Williams All Surface Enamel Paint Number
Yellow	Safety Yellow SW 4084	Safety Yellow 502
Orange	Safety Orange SW 4083	N/A
Green	Cedar Green SW 4072	Hunter Green 510
Light Green	Safety Green SW 4085	Safety Green 506
Blue	N/A	Navy Blue 509
Light Blue	Safety Blue SW 4086	Safety Blue 505
Red	N/A	Apple Red 511
Light Red	Safety Red SW 4081	Safety Red 507
White	Ultra White SW 4087	Extreme White 500
Black	Black SW 4090	Black 501
Purple	Plum SW 4080	N/A

E. Additional Labeling requirements

- 1. Colors: Comply with ASME A13.1, unless otherwise indicated.
- 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length
- 3. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Full-band pipe markers extending 360 degrees around pipe at each location.
- 4. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.
- 5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.
- F. Pre-tensioned Pipe Markers: Pre-coiled semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.
- G. Shaped Pipe Markers: Preformed semi-rigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.
- H. Self-Adhesive Pipe Markers: Plastic with pressure-sensitive, permanent-type, self-adhesive back.
- I. Plastic Tape: Continuously printed, vinyl tape at least 3 mils (0.08 mm) thick with pressure-sensitive, permanent-type, self-adhesive back.
 - 1. Width for Markers on Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): 3/4 inch (19 mm) minimum.
 - 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches (150 mm) or Larger: 1-1/2 inches (38 mm) minimum.

2.3 VALVE TAGS

A. Provide brass valve tags for all valves and a schedule under rigid plastic in the mechanical room.

2.4 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags; of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches (100 by 178 mm)
 - 2. Fasteners: Brass grommet and wire
 - 3. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 23 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION

- A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:
 - 1. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - 2. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - 3. Fans.

3.3 PIPING AND DUCT IDENTIFICATION

- A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.
 - Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Pretensioned pipe markers: color-coded.
- B. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced markers.

3.4 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.5 ADJUSTING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

3.6 CLEANING

A. Clean faces of mechanical identification devices and glass frames of valve schedules.

SECTION 23 0593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Hydronic Piping Systems:
 - a. Constant-flow systems.
 - b. Variable-flow systems.
 - 3. HVAC equipment quantitative-performance settings.
 - 4. Verifying that automatic control devices are functioning properly.
 - 5. Reporting results of activities and procedures specified in this Section.

1.3 SUBMITTALS

- A. Strategies and Procedures Plan: Within 90 days from Contractor's Notice to Proceed, submit two (2) copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- B. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- C. Warranties specified in this Section.

1.4 QUALITY ASSURANCE

- A. TAB Firm Qualifications: Engage a TAB firm certified by AABC or NEBB.
- B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems." Or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."

1.5 PROJECT CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.6 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.7 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
 - The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - Systems are balanced to optimum performance capabilities within design and installation limits.
- B. Special Guarantee: Provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
 - The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine Project Record Documents described in Division 01 Section "Project Record Documents."
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the

- equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- G. Examine system and equipment test reports.
- H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.
- L. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.
- M. Examine strainers for clean screens and proper perforations.
- N. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- O. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- P. Examine system pumps to ensure absence of entrained air in the suction piping.
- Q. Examine equipment for installation and for properly operating safety interlocks and controls.
- R. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
 - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at indicated values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to indicated values.
- S. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:

- 1. Permanent electrical power wiring is complete.
- 2. Hydronic systems are filled, clean, and free of air.
- 3. Automatic temperature-control systems are operational.
- 4. Equipment and duct access doors are securely closed.
- 5. Balance, smoke, and fire dampers are open.
- 6. Isolating and balancing valves are open and control valves are operational.
- 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
- 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.
- B. Cut insulation, ducts and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fanspeed-control levers, and similar controls and devices, to show final settings. Label circuit setters with final setting including flow and dP using a permanent metal tag.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling unit components.
- L. Check for proper sealing of air duct system.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - Measure static pressure directly at the fan outlet or through the flexible connection.

- c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
- 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions.
- 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
- 5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
- 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure terminal outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.
 - Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
- 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

- 1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.
- 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
- 3. Measure total system airflow. Adjust to within indicated airflow.
- 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
- 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.
 - If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
- 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.
- 7. Measure static pressure at the most critical terminal unit and adjust the staticpressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
- 8. Record the final fan performance data.

3.7 PROCEDURES FOR HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 - 4. Report flow rates that are not within plus or minus 5 percent of design.
- B. Set calibrated balancing valves, if installed, at calculated presettings.
- C. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.

- F. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- G. Measure the differential-pressure control valve settings existing at the conclusions of balancing.

3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.9 PROCEDURES FOR BOILERS

A. Measure entering- and leaving-water temperatures and water flow.

3.10 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Water Coils: Measure the following data for each coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
 - 8. Calculate BTU transfer on both air side and water side.
- B. Electric-Heating Coils: Measure the following data for each coil:
 - 1. Nameplate data.
 - 2. Airflow.
 - 3. Entering- and leaving-air temperature at full load.
 - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 - Calculated kilowatt at full load.
 - 6. Fuse or circuit-breaker rating for overload protection.
- C. Refrigerant Coils: Measure the following data for each coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.11 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove

proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

3.12 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.
- D. Refrigerant Coils: Measure the following data for each coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.13 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.14 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
- Record controller settings and note variances between set points and actual measurements.
- D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).
- E. Check free travel and proper operation of control devices such as damper and valve operators.
- F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Check main control supply-air pressure and observe compressor and dryer operations.
- J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.
- K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.15 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 5 to plus 10 percent.
 - 2. Air Outlets and Inlets: 0 to minus 10 percent.
 - 3. Heating-Water Flow Rate: 0 to minus 10 percent.

3.16 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.

- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB firm who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer, type size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports varies from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.

3.17 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

SECTION 23 0700 - HVAC PIPE INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- Insulation Materials:
 - a. Flexible elastomeric
- 2. Insulating cements.
- 3. Adhesives.
- Mastics.
- 5. Lagging adhesives.
- 6. Sealants.
- 7. Factory-applied jackets.
- 8. Field-applied fabric-reinforcing mesh.
- 9. Field-applied cloths.
- 10. Field-applied jackets.
- 11. Tapes.
- 12. Securements.
- 13. Corner angles.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
 - 8. Detail field application for each equipment type.
- C. Qualification Data: For qualified Installer.
- D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- E. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

2.2 ADHESIVES

- A. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.

2.3 SEALANTS

- A. Joint Sealants:
 - Joint Sealants for Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - f. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 - Color: White or gray.

2.4 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville: Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: Color-code jackets based on system. See Mechanical Identification Section for Color
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
 - 5. Factory-fabricated tank heads and tank side panels.
 - 6. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.

- a. Sheet and roll stock ready for shop or field sizing.
- b. Finish and thickness are indicated in field-applied jacket schedules.
- c. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
- d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.5 SECUREMENTS

A. Bands:

- 1. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with closed seal.
- 2. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- (3.5-mm-) diameter shank, length to suit depth of insulation indicated.

2.6 CORNER ANGLES

- A. PVC Corner Angles: 30 mils (0.8 mm) thick, minimum 1 by 1 inch (25 by 25 mm), PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams between the 2 O'clock and 3 o'clock positions
- E. All joints shall be sealed weathertight and with appropriate UV resistant sealant for all exterior applications.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- H. Keep insulation materials dry during application and finishing.
- I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- J. Install insulation with least number of joints practical.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.

- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
- 4. Seal jacket to wall flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
- D. Insulation Installation at Floor Penetrations:
 - Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies.

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:

- Install preformed valve covers manufactured of same material as pipe insulation when available.
- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

 Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints. Horizontal seams must also be sealed.

3.8 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: See Mechanical Identification Section for color. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or PVC jackets.

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate Drain Piping, From Condensate drain to receptor.
 - 1. Insulation shall be one of the following:
 - a. Flexible elastomeric. 3/4" thick.
- B. Refrigerant Suction and Hot-Gas Piping:
 - 1. Insulation shall be one of the following:
 - a. Flexible elastomeric. 2" Thick.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Install removable jacketing for steam traps, PRVs, and all serviceable equipment.
- D. Piping, Concealed:
 - None.
- E. Piping, Exposed Finished Areas:
 - 1. PVC, Color-Coded by System, 20 mils (0.5 mm) thick.
- F. Piping, Exposed Main Mechanical Room shall be one the following.
 - 1. PVC, Color-Coded by System, 20 mils (0.5 mm) thick.
- G. Equipment, Exposed Main Mechanical Room shall be;

3.12 MECHANICAL ROOM INSUALTION AND JACKETING

A. All piping in mechanical rooms, under 8'0" shall be 2" thick with color coded 20 mil PVC jacket. Piping above 8'0 shall comply with sections above.

3.13 OUTDOOR PIPING INSULATION SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. Insulation shall be one of the following:
 - a. Flexible elastomeric. 2" Thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. Insulation shall be one of the following:
 - a. Flexible elastomeric. 2" Thick.
- B. Refrigerant Suction and Hot-Gas Piping:
 - 1. PVC Jacket.

END OF SECTION 23 0700

SECTION 23 0701 - HVAC DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Insulation Materials:
 - a. Mineral fiber.
 - 2. Fire-rated insulation systems.
 - 3. Insulating cements.
 - 4. Adhesives.
 - Mastics.
 - 6. Factory-applied jackets.
 - 7. Field-applied fabric-reinforcing mesh.
 - 8. Tapes.
 - 9. Securements.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
 - 8. Detail field application for each equipment type.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Lined ductwork shall not be accepted in any part of the system.
- B. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- C. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- D. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- E. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- F. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; All-Service Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville: 800 Series Spin-Glas.
 - d. Knauf Insulation: Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Insulco, Division of MFS, Inc.; SmoothKote.
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote.
 - c. Rock Wool Manufacturing Company; Delta One Shot.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.

e. Mon-Eco Industries, Inc.; 22-25.

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company: 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries. Inc.: 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - Childers Products, Division of ITW; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 - d. Marathon Industries, Inc.; 550.
 - e. Mon-Eco Industries, Inc.; 55-50.
 - f. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms (2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F (Minus 29 to plus 93 deg C).
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. (34 g/sq. m) with a thread count of 10 strands by 10 strands/sq. inch (4 strands by 4 strands/sq. mm), in a Leno weave, for duct, equipment, and pipe.

2.7 FIELD-APPLIED JACKETS

A. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.

- 1. Sheet and roll stock ready for shop or field sizing.
- 2. Finish and thickness are indicated in field-applied jacket schedules.
- 3. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.9 SECUREMENTS

- A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 3/4 inch (19 mm) wide with wing or closed seal.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-discharge weld-pins: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 - 2) GEMCO; Press and Peel.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.

- c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

- 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
- 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.

- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
- E. Insulation Installation at Floor Penetrations:
 - Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
- 3.4 SEAL PENETRATIONS THROUGH FIRE-RATED ASSEMBLIES.

3.5 MINERAL-FIBER INSULATION INSTALLATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face

and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).

- 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate

duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Firestopping."

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.8 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in nonconditioned space.
 - 4. Indoor, exposed return located in nonconditioned space.
 - Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 7. Outdoor, concealed supply and return.
 - 8. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Factory-insulated flexible ducts.
 - 2. Factory-insulated plenums and casings.
 - 3. Flexible connectors.
 - 4. Vibration-control devices.
 - 5. Factory-insulated access panels and doors.
 - 6. Exhaust Ducts

3.9 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket.
 - 1. Thermal insulation R-Value: R-8
 - 2. Factory FSK Jacket
- B. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket.
 - 1. Thermal insulation R-Value: R-8
 - 2. Factory FSK Jacket

- C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket.
 - 1. Thermal insulation R-Value: R-8
 - 2. Factory FSK Jacket
- D. Exposed, Supply-Air Duct and Plenum Insulation: Mineral-fiber board.
 - Thermal insulation R-Value: R-8
 - 2. Field-Applied Woven Fiber Jacket, painted.
- E. Exposed, Return-Air Duct and Plenum Insulation: Mineral-fiber board.
 - 1. Thermal insulation R-Value: R-8
 - 2. Field-Applied Woven Fiber Jacket, painted.
- F. Exposed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber board.
 - 1. Thermal insulation R-Value: R-8
 - 2. Field-Applied Woven Fiber Jacket, painted.

3.10 CONCEALED, ROOF-MOUNTED DUCT

- A. Supply duct
 - 1. Thermal insulation R-Value: R-8
 - 2. Double-walled construction with 2" mineral fiber preformed wrap.

END OF SECTION 23 0701

SECTION 23 0813 - COMMISSIONING OF MECHANICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. The purpose of this section is to specify the Division 23 contractor responsibilities in the commissioning (Cx) process.
- B. Commissioning requires the participation of the Division 23 contractor to ensure that all systems are operating in a manner consistent with the Contract Documents. The general commissioning requirements and coordination are detailed in Section 019113, General Commissioning Requirements. The Division 23 contractor shall be familiar with all parts of Section 019113 and shall execute all commissioning responsibilities assigned to them in the Contract Documents.
- C. Section includes Cx process requirements for the following HVAC systems, assemblies, and equipment:
 - Exhaust Fans
 - 2. Constant Volume Split System Air Handling Units with Bypass
 - 3. Energy Recovery Ventilator Unit
 - 4. Variable Volume Terminal Unit
 - Electric Unit Heaters
 - 6. Gas Fired Unit Heaters
 - 7. Building Automation System (BAS) associated with equipment listed for Commissioning.

1.3 RESPONSIBILITIES

- A. The responsibilities of various parties in the commissioning process, as specifically related to the mechanical systems, are provided in this section.
- B. Refer to Section 019113 for all typical commissioning process requirements for each team member.
- C. Each Contractor and subcontractor shall review this Section and shall include in their bids cost for carrying out the work described, as it applies to each Division and Section of these specifications, individually and collectively.
- D. The commissioning responsibilities applicable to each of the mechanical, controls and TAB contractors of Division 23 are as follows (all references apply to commissioned equipment only): Construction and Acceptance Phases
 - 1. Include the cost of commissioning work in the contract price.
 - 2. Attend a commissioning kick-off meeting and other necessary meetings scheduled by the CxA to facilitate the Cx process, as indicated in specification section 019113.
 - 3. Contractors shall provide the CxA with cut sheets and shop drawing submittals of commissioned equipment to the CxA.
 - 4. Provide additional requested documentation, prior to normal O&M manual submittals, to the CxA for development of Pre-Functional Checklists (PFC) and Functional Performance Testing (FPT) procedures.
 - a. Typically, this will include detailed manufacturer installation and startup, operating, troubleshooting and maintenance procedures, full details of any owner-contracted tests, fan and pump curves, full factory testing reports, if any, and full warranty information, including all responsibilities of the Owner to keep the warranty in force clearly identified. In addition, the installation, startup and checkout materials that are actually shipped inside the equipment and the actual field checkout sheet

forms to be used by the factory or field technicians shall be submitted to the Commissioning Agent.

- b. The CxA may request further documentation necessary for the commissioning process.
- 5. Provide a copy of the equipment submittals of commissioned equipment, through normal channels, to the CxA for review and comment.
- 6. Contractors shall assist (along with the design engineers) in clarifying the operation and control of commissioned equipment in areas where the specifications, control drawings or equipment documentation is not sufficient for writing detailed testing procedures.
- 7. Provide assistance to the CxA in preparing the specific FPT procedures as specified Section 019113 and this section. Contractor(s) shall review test procedures to ensure feasibility, safety and equipment protection and provide necessary written alarm limits to be used during the tests.
- 8. Develop a full startup and initial checkout plan using manufacturer's startup procedures and the Pre-Functional Checklists (PFCs) from the CxA for all commissioned equipment. Submit manufacturer's detailed startup procedures and the full startup plan and procedures and other requested equipment documentation to CxA for review and comment. Refer to Section 019113 for further details on startup plan preparation.
- 9. During the startup and initial checkout process, execute the mechanical-related portions of the PFCs for all commissioned equipment.
- 10. Perform and clearly document all completed startup and system operational checkout procedures, providing a copy to the CxA.
- 11. Address current A/E punch list items before FPT. Air and water TAB shall be completed with discrepancies and problems remedied. The TAB Report is to be reviewed and approved by the Engineer of Record prior to beginning TAB verification and FPT.
- 12. Provide skilled technicians to execute starting of equipment and to execute the FPTs. Ensure that they are available and present during the agreed upon schedules and for sufficient duration to complete the necessary tests, adjustments and problem-solving.
- 13. Perform FPTs under the direction of the CxA for specified equipment in Section 019113 and this Section. Assist the CxA in interpreting the monitoring data, as necessary.
- 14. Correct deficiencies (differences between specified and observed performance) as interpreted by the CxA, Construction Manager/General Contractor (CM/GC) and A/E and retest the equipment.
- 15. Prepare O&M manuals according to the Contract Documents, including clarifying and updating the original sequences of operation to as-built conditions.
- 16. During construction, maintain as-built/record red-line drawings and CAD drawings and provide final record drawings for contractor-generated coordination drawings. Update after completion of commissioning (excluding deferred testing).
- 17. Provide training of the Owner's operating staff using expert qualified personnel, as specified.
- 18. Coordinate with equipment manufacturers to determine specific requirements to maintain the validity of the warranty.

Warranty Period

- 1. Execute seasonal or deferred functional performance testing, witnessed by the CxA, according to the specifications.
- 2. Correct deficiencies and make necessary adjustments to O&M manuals and record drawings for applicable issues identified in any seasonal testing.

E. Mechanical Contractor

Construction and Acceptance Phases

- Provide startup for all HVAC equipment, except for the building automation control system.
- 2. Assist and cooperate with the TAB contractor and CxA by:
 - a. Putting all HVAC equipment and systems into operation and continuing the operation during each working day of TAB and commissioning, as required.

- b. Providing temperature and pressure taps according to the Construction Documents and at each water sensor which is an input point to the control system, for TAB and commissioning testing.
- 3. List and clearly identify on the as-built drawings the locations of all air-flow stations.
- 4. Prepare a preliminary schedule for Division 23 pipe and duct system testing, flushing and cleaning, equipment startup and TAB start and completion for use by the CxA. Update the schedule as appropriate.
- 5. Notify the Owner, CM/GC, or CxA depending on protocol, when pipe and duct system testing, flushing, cleaning, startup of each piece of equipment and TAB will occur. Be responsible to notify the Owner, CM/GC, or CxA, ahead of time, when commissioning activities not yet performed or not yet scheduled will delay construction. Be proactive in seeing that commissioning processes are executed and that the CxA has the scheduling information needed to efficiently execute the commissioning process.

Warranty Period

1. Participate in the near-warranty end (ten month) post occupancy visit.

F. Controls Contractor

Construction and Acceptance Phases

- Sequences of Operation Submittals. The Controls Contractor's submittals of control drawings shall include complete detailed sequences of operation for each piece of equipment, regardless of the completeness and clarity of the sequences in the specifications. They shall include:
 - a. An overview narrative of the system (1 or 2 paragraphs) generally describing its purpose, components and function.
 - b. All interactions and interlocks with other systems.
 - c. Detailed delineation of control between any packaged controls and the building automation system, listing what points the BAS monitors only and what BAS points are control points and are adjustable.
 - d. Written sequences of control for packaged controlled equipment. (Equipment manufacturers' stock sequences may be included but will generally require additional narrative).
 - e. Startup sequences.
 - f. Warm-up mode sequences.
 - g. Normal operating mode sequences.
 - h. Unoccupied mode sequences.
 - i. Shutdown sequences.
 - j. Capacity control sequences and equipment staging.
 - k. Temperature and pressure control: setbacks, setups, resets, etc.
 - I. Detailed sequences for all control strategies, e.g., economizer control, optimum start/stop, staging, optimization, demand limiting, etc.
 - m. Effects of power or equipment failure with all standby component functions.
 - n. Sequences for all alarms and emergency shutdowns.
 - o. Seasonal operational differences and recommendations.
 - p. Initial and recommended values for all adjustable settings, set points and parameters that are typically set or adjusted by operating staff; and any other control settings or fixed values, delays, etc. that will be useful during testing and operating the equipment.
 - q. Schedules, if known.
 - r. To facilitate referencing in testing procedures, all sequences shall be written in small statements, each with a number for reference. For a given system, numbers will not repeat for different sequence sections, unless the sections are numbered.
- 2. Control Drawings Submittal
 - a. The control drawings shall have a key to all abbreviations.
 - b. The control drawings shall contain graphic schematic depictions of the systems and each component.

- c. The schematics will include the system and component layout of any equipment that the control system monitors, enables or controls, even if the equipment is primarily controlled by packaged or integral controls.
- d. Provide a full points list with at least the following included for each point:
 - 1) Controlled system
 - 2) Point abbreviation
 - 3) Point description (e.g., DB temp, airflow, relative humidity, static pressure, etc.)
 - 4) Display unit
 - 5) Control point or set point (Point that controls equipment and can have its set point changed, e.g. OAT, SAT, etc.) (Yes / No)
 - 6) Monitoring point (Point that does not control or contribute to the control of equipment, but is used for operation, maintenance, or performance verification) (Yes / No)
 - 7) Intermediate point (Point whose value is used to make a calculation which then controls equipment, e.g. space temperatures that are averaged to a virtual point to control reset) (Yes / No)
 - 8) Calculated point ("Virtual" point generated from calculations of other point values) (Yes / No)
 - 9) Control dead bands and any applicable times for feedback control loops
- e. The Controls Contractor shall keep the CxA informed of all changes to this list during programming and setup.
- 3. An updated as-built version of the control drawings and sequences of operation shall be included in the final controls O&M manual submittal.
- 4. Assist and cooperate with the TAB contractor in the following manner:
 - a. Meet with the TAB contractor prior to beginning TAB and review the TAB plan to determine the capabilities of the control system toward completing TAB. Provide the TAB any needed unique instruments for setting terminal unit boxes and instruct TAB in their use (handheld control system interface for use around the building during TAB, etc.).
 - b. For a given area, have all required PFCs, calibrations, startup and selected functional tests of the system completed and approved by the CxA prior to TAB.
 - c. Provide a qualified technician to operate the controls to assist the TAB contractor in performing TAB or provide sufficient training for TAB to operate the system without assistance.
- Sensor and Actuator Calibration:
 - a. All field-installed temperature, relative humidity, CO, CO₂ and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be field calibrated. Verify that all locations are appropriate and away from causes of erratic operation (i.e. unstable flow conditions, other heat sources, vibration, etc.).
 - b. Verify that the sensor reading (via the permanent thermostat, gage or BAS) is within the tolerances defined in the controls specification section 230900 of the instrument-measured value over the full range of expected control. If not, install offset in the BAS, calibrate or replace sensor.
- 6. Provide a signed and dated certification to the CxA and CM/GC upon completion of the checkout of each controlled device, equipment and system prior to FPT for each piece of equipment or system, that all system programming is complete.
- 7. Assist and cooperate with the CxA in the following manner:
 - a. Using a skilled technician who is familiar with this building, execute the FPT of the controls system as specified for the controls contractor in Section 019113 and this Section. Provide two-way radios during the testing if necessary for communications.
 - b. Execute all control system trend logs specified and as requested by the CxA.

8. List and clearly identify on the as-built duct and piping drawings the locations of all static and differential pressure sensors (air, water and building pressure).

Warranty Period

- Participate in the near-warranty end (ten month) post occupancy visit.
- G. TAB Contractor

Construction and Acceptance Phases

- 1. A running log of events and issues shall be kept by the TAB field technicians. Submit hand-written reports of discrepancies, deficient or uncompleted work by others, contract interpretation requests and lists of completed tests to the Owner, CxA and CM/GC at least twice a week.
- 2. Communicate in writing to the controls contractor all set point and parameter changes made or problems and discrepancies identified during TAB which affect the control system setup and operation.
- 3. Provide a draft TAB report in accordance with specification 014520. A copy will be provided to the Owner, design team and CxA.
- 4. Provide the CxA with any requested data, gathered, but not shown on the draft reports.
- 5. Provide a final TAB report for the Owner, design team and CxA with details, as in the draft. The final TAB Report shall be submitted with acceptance by the Engineer of Record before beginning TAB Verification.
- 6. Conduct FPT and checks on the original TAB as specified for TAB requirements in Section 019113.

1.4 RELATED WORK

- A. Refer to Section 019113 for a listing of all sections where commissioning requirements are found.
- B. Refer to Section 019113 for systems to be commissioned.

1.5 SUBMITTALS

A. Division 23 contractor(s) shall provide submittal documentation relative to commissioning to the CxA as requested by the CxA. Refer to Section 019113 for additional Division 23 requirements.

1.6 WEB-BASED COMMISSIONING PORTAL

A. All general and major contractors participating in the Cx process shall use the web-based Cx Portal, CxAlloy ("Portal" or "CxAlloy") to document the Cx procedures. The Portal is a Web-based Internet hub used to electronically collaborate and coordinate activities and deliverables throughout the Cx process. The Portal is hosted by the CxA and shall be accessible to all Parties participating in the Cx program. The Portal provides a common location to store PFCs, Startup Documentation, FPTs and results, Issues Log tracking, project documents and deliverables. It also serves as a collaborative e-mail hub to facilitate, automate, and track communications between Parties relating to the Cx process.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. Division 23 contractor shall provide all test equipment necessary to fulfill the testing requirements of this Division.
- B. Refer to Section 019113 for additional Division 23 test equipment requirements.
- C. Proprietary test equipment required by the manufacturer, whether specified or not, shall be provided by the manufacturer of the equipment through the contractor. The manufacturer shall provide the test equipment, demonstrate its use and assist the CxA in the Cx process.

2.2 INCIDENTAL EQUIPMENT

A. The Division 23 contractor shall provide all scaffolds, staging, ladders and accessories required to allow testing agencies, consultants and Owner's staff safe access to equipment, valves and other devices located above floor level.

PART 3 - EXECUTION

3.1 MEETINGS

- A. Refer to Section 019113 for additional meeting requirements.
- B. Participation at various commissioning meetings shall depend on the purpose of the meeting and may consist of, but not be limited to, the following members of the project commissioning team: the Owner's representative (i.e. project manager and/or facility staff), the CxA, the CM/GC, subcontractors and/or manufacturer's technical representative as required, the architect/engineer (A/E), and any specialists deemed appropriate by the Cx team.
- C. All the listed Cx team members shall participate in the Cx kick-off meeting.
- D. Participate, as applicable, in Cx coordination meetings in accordance with related Section 019113.
- E. Participate, as needed, in deficiency resolution meetings.

3.2 STARTUP

- A. The HVAC mechanical and controls contractors shall follow the startup, initial checkout procedures, and PFCs listed in the Responsibilities list in this section and Section 019113. The Division 23 contractor has startup responsibility and is required to complete systems and subsystems so they are fully functional, meeting the design objectives of the Contract Documents. The commissioning procedures and functional testing do not relieve or lessen this responsibility or shift that responsibility to the CxA or Owner.
- B. FPT is intended to begin upon completion of a system. FPT will not proceed prior to the completion of systems, or sub-systems, which includes completion of the PFCs and completion and approval of any necessary testing, adjusting and balancing (TAB) requirements.

3.3 PRE-FUNCTIONAL CHECKLISTS

- A. Sampling Strategy: 100% of commissioned systems and equipment shall have PFCs completed and submitted for review and approval prior to functional performance testing. The CxA may observe the Division 23 contractor's completion of the PFCs.
- B. Typical aspects of mechanical PFCs verify that the equipment matches the approved submittal, is installed properly, is started-up (and startup is documented) and integrated disciplines (i.e. electrical, equipment vendors, controls) have completed their work required for the equipment and system to function in its entirety. Examples would include spot checking of wiring/termination point-to-points and verification of alarm point parameters and messages.

3.4 CALIBRATION

A. Sensor and actuator calibration and calibration methods are covered in Section 019113 and Division 23 and are the responsibility of the Division 23 contractor.

3.5 TESTING PREPARATION

A. Inspect and verify the position of each device and interlock identified on checklists.

- B. Certify that Mechanical systems, subsystems, and equipment have been installed, calibrated, started, quality control tested and code tested (as applicable) and are operating according to the Contract Documents.
- C. Certify that mechanical instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest setpoints have been recorded.
- D. Certify that TAB procedures have been completed and that TAB reports have been submitted, discrepancies corrected, and corrective work approved by the Engineer of Record.
- E. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.6 FUNCTIONAL PERFORMANCE TESTS

- A. FPT is intended to begin upon completion of a system, including startup and completion of the PFCs. Functional testing may proceed prior to the completion of systems or sub-systems at the discretion of the CxA and Owner. Beginning system testing before full completion does not relieve the Contractor from fully completing the system, including all PFCs as soon as possible
- B. Refer to Section 019113 for a list of systems to be commissioned and a description of the process.
- C. Sampling Strategy

1.	Exhaust Fans	(5 of 8)
2.	Constant Volume Split System Air Handling Units	(2 of 2)
3.	Energy Recovery Ventilator Units	(1 of 1)
4.	Variable Volume Terminal Units	(6 of 10)
5.	Electric Unit heaters	(1 of 1)
6.	Gas Fired Unit Heaters	(3 of 7)

- 7. Building Automation System (BAS)/Direct Digital Control (DDC) System (as required for equipment/system verification)
- D. Refer to Section 019113, Sampling for the Sampling/Failure Rule.
- E. Typical aspects of mechanical FPTs verify that systems, subsystems and equipment function interactively and throughout the full range of operating conditions (e.g. low load, design load, component failures, alarm conditions, safety interlocks including with life safety systems, etc.) and modes (e.g. normal shutdown, normal auto position, normal manual position, power failure including control power, emergency power, unoccupied, fire alarm, etc.). The systems are run through all the control system's sequences of operation and components are verified to be responding as the sequences state. Positive confirmation of state/status shall be shown both locally and via the BAS, as specified in the Contract Documents.
- F. Development of Test Procedures: Before test procedures are written, the CxA shall obtain project contract documentation and a current list of change orders and RFI's affecting equipment or systems, including an updated points list, program code, control sequences and parameters and electrical coordination study. The CxA shall develop specific test procedures and forms for evaluating performance of all integral components and their functioning as a complete unit within design requirements and manufacturer's published data. Prior to execution, the CxA shall provide a copy of the test procedures to the Contractors who shall review the tests for feasibility, safety, equipment and warranty protection.

3.7 TESTING DOCUMENTATION, NON-CONFORMANCE AND APPROVALS

- A. Refer to Section 019113 for specific details on non-conformance issues relating to PFCs and tests.
- B. Refer to Section 019113 for issues relating to functional performance tests.

3.8 OPERATION AND MAINTENANCE (O&M) MANUALS

A. The following O&M manual requirements do not replace O&M manual documentation requirements elsewhere in these specifications.

- B. Division 23 contractor shall compile and prepare documentation for all equipment and systems covered in Division 23 and deliver to the CM/GC for inclusion in the O&M manuals.
- C. The CxA shall receive a copy of the O&M manuals for concurrent review and comment with the A/E.

3.9 SYSTEMS MANUAL REQUIREMENTS

- A. The Systems Manual is intended to be a usable information resource containing all of the information related to the systems, assemblies, and Commissioning Process in one place with indexes and cross references. The CM/GC shall include final approved versions of the following information for the Systems Manual:
 - 1. As-Built System Schematics
 - 2. Verified Record Drawings
 - 3. As-built control drawings and sequences of operation, along with final system setpoints
 - 4. Test Results (not otherwise included in Cx Record)
 - 5. Periodic Maintenance Information for all commissioned equipment
 - 6. Recommendations for recalibration frequency of sensors and actuators
 - 7. A list of contractors, subcontractors, suppliers, architects, and engineers involved in the project along with their contact information
 - 8. Training Records, Information on training provided, attendees list, and any on-going training
- B. This information shall be organized and arranged by building system, such as fire alarm, chilled water, heating hot water, etc.
- C. Information should be provided in an electronic version to the extent possible. Legible, scanned images are acceptable for non-electronic documentation to facilitate this deliverable.

3.10 TRAINING OF OWNER PERSONNEL

- A. The CM/GC shall be responsible for training coordination and scheduling and ultimately to ensure that training is completed in accordance with Division 1 requirements. Refer to Section 019113 for additional details.
- B. The CxA shall be responsible for reviewing the training scheduled and verifying owner training was completed. Refer to Section 019113 for additional details.
- C. Mechanical Contractor: The mechanical contractor shall have the following training responsibilities:
 - 1. Provide the CxA with a training plan eight (8) weeks before the planned training according to the outline described in Section 019113.
 - 2. Provide designated Owner personnel with comprehensive orientation and training in the understanding of the systems and the operation and maintenance of each piece of HVAC equipment including, but not limited to, all HVAC equipment (ex. pumps, heat exchangers, chillers, heat rejection equipment, air conditioning units, air handling units, fans, terminal units, controls and water treatment systems, etc.)
 - 3. Training shall normally start with classroom sessions followed by hands-on training on each piece of equipment, which shall illustrate the various modes of operation, including startup, shutdown, fire/smoke alarm, power failure, etc.
 - 4. During any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operations, the system will be repaired or adjusted as necessary and the demonstration repeated.
 - 5. The appropriate trade or manufacturer's representative shall provide the instructions on each major piece of equipment. This person may be the startup technician for the piece of equipment, the installing contractor or manufacturer's representative. Practical building operating expertise as well as in-depth knowledge of all modes of operation of the specific piece of equipment are required. More than one party may be required to execute the training.

- 6. The controls contractor shall attend sessions other than the controls training, as requested, to discuss the interaction of the controls system as it relates to the equipment being discussed.
- The training sessions shall follow the outline in the Table of Contents of the operation and maintenance manual and illustrate whenever possible the use of the O&M manuals for reference.
- 8. Training shall include:
 - a. Use of the printed installation, operation and maintenance instruction material included in the O&M manuals.
 - b. A review of the written O&M instructions emphasizing safe and proper operating requirements, preventative maintenance, special tools needed and spare parts inventory suggestions. The training shall include startup, operation in all modes possible, shut-down, seasonal changeover and any emergency procedures.
 - c. Discussion of relevant health and safety issues and concerns.
 - d. Discussion of warranties and guarantees.
 - e. Common troubleshooting problems and solutions.
 - f. Explanatory information included in the O&M manuals and the location of all plans and manuals in the facility.
 - g. Discussion of any peculiarities of equipment installation or operation.
 - h. The format and training agenda in The HVAC Commissioning Process, ASHRAE Guideline 1, is recommended.
 - i. Classroom sessions shall include the use of overhead projections, slides, video/audio-taped material as might be appropriate.
- 9. Hands-on training shall include startup, operation in all modes possible, including manual, shutdown and any emergency procedures and preventative maintenance for all pieces of equipment.
- 10. The mechanical contractor shall fully explain and demonstrate the operation, function and overrides of any local packaged controls, not controlled by the central control system.
- 11. Training shall occur after FPT is complete, unless approved otherwise by the Owner.
- D. Controls Contractor: The controls contractor shall have the following training responsibilities:
 - 1. Provide the CxA and AE with a training plan eight (8) weeks before the planned training.
 - 2. The controls contractor shall provide designated Owner personnel training on the control system in this facility. The intent is to clearly and completely instruct the Owner on all the capabilities of the control system.
 - 3. Training manuals. The standard operating manual for the system and any special training manuals will be provided for each trainee, with three extra copies left for the O&M manuals. In addition, copies of the system technical manual will be demonstrated during training and three copies submitted with the O&M manuals. Manuals shall include detailed description of the subject matter for each session. The manuals will cover all control sequences and have a definitions section that fully describes all relevant words used in the manuals and in all software displays. Manuals will be approved by the CxA and A/E.
 - 4. The training will be tailored to the needs and skill-level of the trainees.
 - 5. The trainers will be knowledgeable on the system and its use in buildings. For the on-site sessions, the most qualified trainer(s) will be used. The Owner shall approve the instructor prior to scheduling the training.
 - 6. During any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operations, the system will be repaired or adjusted as necessary and the demonstration repeated.
 - 7. The controls contractor shall attend sessions other than the controls training, as requested, to discuss the interaction of the controls system as it relates to the equipment being discussed.
 - 8. Provide 16 hours of training for the Owner's designated operating personnel. Training shall include:

- a. Specific hardware configuration of installed systems in this building and specific instruction for operating the installed system, including HVAC systems, lighting controls and any interface with security and communication systems
- b. Security levels, alarms, system startup, shut-down, power outage and restart routines, changing set points and alarms and other typical changed parameters, overrides, freeze protection, manual operation of equipment, optional control strategies that can be considered, energy savings strategies and set points that if changed will adversely affect energy consumption, energy accounting, procedures for obtaining vendor assistance, etc.
- c. All trending and monitoring features (values, change of state, totalization, etc.), including setting up, executing, downloading, viewing both tabular and graphically and printing trends. Trainees will actually set-up trends in the presence of the trainer.
- d. Every screen shall be completely discussed, allowing time for questions
- e. Use of keypad or plug-in laptop computer at the zone level
- f. Use of remote access to the system
- g. Setting up and changing an air terminal unit controller
- h. Graphics generation
- i. Point database entry and modifications
- j. Understanding DDC field panel operating programming (where applicable)
- E. TAB Contractor: The TAB contractor shall have the following training responsibilities:
 - TAB shall meet with facility staff after completion of TAB and instruct them on the following:
 - a. Review and discuss the final TAB report, explaining the layout and meanings of each data type.
 - b. Identify and discuss any units, duct runs, diffusers, coils, fans and pumps that are close to or are not meeting their design capacity.
 - c. Discuss any temporary settings and steps to finalize them for any areas that are not finished.
 - d. Other salient information that may be useful for facility operations, relative to TAB.

3.11 DEFERRED TESTING

A. Refer to Section 019113 for requirements of deferred testing.

3.12 WRITTEN WORK PRODUCTS

A. Written work products of the Division 23 contractors will consist of the startup and initial checkout plan described in Section 019113 and the completed startup, initial checkout and PFCs.

END OF SECTION 23 0813

SECTION 23 2300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-22:
 - 1. Suction Lines for Air-Conditioning Applications: 185 psig (1276 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 325 psig (2241 kPa).
 - 3. Hot-Gas and Liquid Lines: 325 psig (2241 kPa).

1.3 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop based on manufacturer's test data.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
- C. Field quality-control test reports.
- D. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.5 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or L (ASTM B 88M, Type A or B).
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:

- 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
- 2. End Connections: Socket ends.
- 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
- 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 275 deg F (135 deg C).

B. Packed-Angle Valves:

- 1. Body and Bonnet: Forged brass or cast bronze.
- 2. Packing: Molded stem, back seating, and replaceable under pressure.
- 3. Operator: Rising stem.
- 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
- 5. Seal Cap: Forged-brass or valox hex cap.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Working Pressure Rating: 500 psig (3450 kPa).
- 8. Maximum Operating Temperature: 275 deg F (135 deg C).

C. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.
- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig (3.4 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 275 deg F (135 deg C).

D. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig (3450 kPa).
- E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 115-V ac coil.
 - 6. Working Pressure Rating: 400 psig (2760 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
 - 8. Manual operator.

- F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Working Pressure Rating: 400 psig (2760 kPa).
 - 6. Maximum Operating Temperature: 240 deg F (116 deg C).
- G. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F (4.4 deg C)].
 - 6. Superheat: Adjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 700 psig (4820 kPa).
- H. Straight-Type Strainers:
 - Body: Welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.
 - 4. Working Pressure Rating: 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 275 deg F (135 deg C).
- I. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.
 - 5. Working Pressure Rating: 500 psig (3450 kPa).
 - 6. Maximum Operating Temperature: 275 deg F (135 deg C).
- J. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 - 3. Indicator: Color coded to show moisture content in ppm.
 - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
 - 5. End Connections: Socket or flare.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
- K. Replaceable-Core Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated charcoal.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig (14 kPa).
 - 8. Rated Flow: Matched to Unit.
 - 9. Working Pressure Rating: 500 psig (3450 kPa).
 - 10. Maximum Operating Temperature: 240 deg F (116 deg C).
- L. Permanent Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell.

- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated charcoal.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig (14 kPa).
- 8. Rated Flow: Matched to Unit.
- 9. Working Pressure Rating: 500 psig (3450 kPa).
- 10. Maximum Operating Temperature: 240 deg F (116 deg C).
- M. Liquid Accumulators: Comply with ARI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig (3450 kPa).
 - 4. Maximum Operating Temperature: 275 deg F (135 deg C).

2.3 REFRIGERANTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- B. R410a

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Suction Lines for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Safety-Relief-Valve Discharge Piping: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install packed-angle valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at strainers if they are not an integral part of strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- D. Except as otherwise indicated, install packed-angle valves on inlet and outlet side of filter dryers.
- E. Install a full-sized, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve. Install solenoid valves in horizontal lines with coil at top.
- G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Compressor.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve.
- L. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- R. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping."
- S. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

- T. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- U. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- V. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 PIPE JOINT CONSTRUCTION

- A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAq, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
 - 9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).
- D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

- B. Tests and Inspections:
 - Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 23 2300

SECTION 23 3113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Double-wall ducts and fittings in inaccessible locations.
 - 3. Double-wall ducts and fittings for sound attenuation
 - 4. Single-wall round and flat-oval ducts and fittings.
 - Sheet metal materials.
 - 6. Duct liner (not permitted)
 - 7. Sealants and gaskets.
 - 8. Hangers and supports.
 - 9. Seismic-restraint devices.

B. Related Sections:

- 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Division 23 Section "Nonmetal Ducts" for fibrous-glass ducts, thermoset fiber-reinforced plastic ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
- 3. Division 23 Section "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
- 4. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated.
 - Static-Pressure Classes:
 - a. Supply Ducts (except in Mechanical Rooms): 1-inch wg (250 Pa)
 - b. Supply Ducts (Upstream from Air Terminal Units): 2-inch wg (500 Pa)
 - c. Supply Ducts (Downstream from Air Terminal Units): 1-inch wg (250 Pa)
 - d. Supply Ducts (in Mechanical Equipment Rooms): 2-inch wg (500 Pa)
 - e. Return Ducts (Negative Pressure): 1-inch wg (250 Pa)
 - f. Exhaust Ducts (Negative Pressure): 1-inch wg (250 Pa)
 - Leakage Class:
 - a. Round Supply-Air Duct: 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa)
 - b. Rectangular Supply-Air Duct: 6 cfm/100 sq. ft. at 1-inch wg (0.29 L/s per sq. m at 250 Pa)
 - c. Flexible Supply-Air Duct: 6 cfm/100 sq. ft. at 1-inch wg (0.29 L/s per sq. m at 250 Pa) Retain seismic options and design criteria in paragraph below that are approved by authorities having jurisdiction.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Sealants and gaskets.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment
- C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
 - g. Other requirements for coordination drawings provided in SECTION 230010 COORDINATION DRAWINGS
- D. Welding certificates.
- E. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Mockups:
 - Before installing duct systems, build mockups representing roof chase enclosed ductwork. Build mockup to comply with the following requirements, using materials indicated for the completed Work:
 - a. Two transverse joints.
 - b. One typical branch connection, each with at least one elbow.
 - c. One 90-degree turn with turning vanes.
 - d. Perform leakage tests specified in "Field Quality Control" Article. Revise mockup construction and perform additional tests as required to achieve specified minimum acceptable results.

- 2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
- C. Duct performance shall be demonstrated to engineer and owner for all new ductwork installed to be in compliance with requirements above.
 - 1. Leakage test shall be a dual-manometer type.
 - 2. Leakage rates shall be calculated by contractor based upon fan curves
 - 3. No new ductwork may be insulated until leakage test has been performed and approved by engineer.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 DOUBLE-WALL DUCTS AND FITTINGS IN INACCESIBLE LOCATIONS:

- A. Fabricate ducts with indicated dimensions for the inner duct.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- C. Transverse Joints: Welded Joints
- D. Longitudinal Seams: Welded Joints
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K)] at 75 deg F (24 deg C) mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- F. Inner Duct In-accessible applications: solid sheet steel.

2.3 DOUBLE-WALL DUCTS AND FITTINGS FOR SOUND ATTENUATION

- A. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

- C. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Traverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K)] at 75 deg F (24 deg C) mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- F. Inner Duct Sound Attenuation Applications: Minimum 0.028-inch (0.7-mm) perforated galvanized sheet steel having 3/32-inch- (2.4-mm-) diameter perforations, with overall open area of 23 percent

2.4 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter (diameter of the round sides connecting the flat portions of the duct).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Seams Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.5 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct

construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180)
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- F. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.6 DUCT LINER

1. Duct liner will not be accepted in any part of the system for this project.

2.7 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smokedeveloped index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches (102 mm).
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
 - Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.

- 5. Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.8 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.

- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 SEAM AND JOINT SEALING

- A. Seal duct seams and joints for duct static-pressure and leakage classes specified in "Performance Requirements" Article, according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 1-2, "Standard Duct Sealing Requirements," unless otherwise indicated.
- B. Seal Classes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 1-2, "Standard Duct Sealing Requirements."

3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.4 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.5 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - Comply with SMACNA's "HVAC Air Duct Leakage Test Manual."
 - 2. Test the following systems:
 - a. Supply air.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before insulation application.
 - Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.7 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel.
- B. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
- C. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm (5 m/s) or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible,"

Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

- c. Velocity 1500 fpm (7.6 m/s) or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 - Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Standing seam.
- D. Branch Configuration:
 - Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards

 Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm (5 m/s) or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
 - c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION 23 3113

SECTION 23 3300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Backdraft and pressure relief dampers.
 - 2. Barometric relief dampers.
 - 3. Manual volume dampers Handle Actuated
 - 4. Manual volume dampers Remote Actuated
 - 5. Control dampers.
 - 6. Fire dampers.
 - 7. Flange connectors.
 - 8. Turning vanes.
 - 9. Duct-mounted access doors.
 - 10. Flexible connectors.
 - 11. Duct accessory hardware.

1.3 SUBMITTALS

- A. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - Detail duct accessories fabrication and installation in ducts and other construction.
 Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations. Handle, Cable, and Shaft actuated.
 - c. Control damper installations.
 - d. Fire-damper, combination fire- and smoke-damper, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Wiring Diagrams: For power, signal, and control wiring.
- B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- C. Source quality-control reports.
- D. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90 (Z275).
 - 2. Exposed-Surface Finish: Mill phosphatized.
- C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- D. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - 3. NCA Manufacturing, Inc.
 - 4. Pottorff; a division of PCI Industries, Inc.
 - 5. Ruskin Company.
- B. Description: Gravity balanced
- C. Maximum Air Velocity: 2000 fpm (10 m/s)
- D. Maximum System Pressure: 5-inch wg (0.25 kPa)
- E. Frame: 0.063-inch- (1.6-mm-) thick extruded aluminum.
- F. Blades: Multiple single-piece blades, maximum 6-inch (150-mm) width, 0.025-inch- (0.6-mm-) thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:
 - 1. Material: Galvanized steel.
 - 2. Diameter: 0.20 inch (5 mm)
- J. Tie Bars and Brackets: Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball.
- M. Accessories:
 - Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Front of rear screens.
 - 6. 90-degree stops.
- N. Sleeve: Minimum 20-gage (1.0-mm) thickness.

2.3 BAROMETRIC RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Greenheck Fan Corporation. 1.
 - 2. Nailor Industries Inc.
 - 3. NCA Manufacturing, Inc.
 - Pottorff; a division of PCI Industries, Inc. 4.
 - 5. Ruskin Company.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 2000 fpm (10 m/s).
- D. Maximum System Pressure: 5-inch wg (0.5 kPa).
- E. Frame: 0.064-inch- (1.6-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Blades:
 - Multiple, 0.025-inch- (0.6-mm-) thick, roll-formed aluminum. 1.
 - Maximum Width: 6 inches (150 mm). 2.
 - 3. Action: Parallel.
 - Balance: Gravity. 4.
 - Eccentrically pivoted.
- G. Blade Seals: Neoprene.
- H. Blade Axles: Galvanized steel.
- Tie Bars and Brackets: I.
 - 1. Material: Galvanized steel.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Stainless steel.
- Accessories: L.
 - Flange on intake. 1.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS (HANDLE ACTUATED)

- Α. Standard, Steel, Manual Volume Dampers:
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Air Balance Inc.; a division of Mestek, Inc. a.
 - h. METALAIRE. Inc.
 - Nailor Industries Inc. C.
 - Pottorff; a division of PCI Industries, Inc. d.
 - Ruskin Company.
 - Standard leakage rating. 2.
 - Suitable for horizontal or vertical applications. 3.
 - 4. Frames:
 - Hat-shaped, galvanized-steel channels, 0.064-inch (1.62-mm) minimum a. thickness.
 - Mitered and welded corners. b.
 - Flanges for attaching to walls and flangeless frames for installing in ducts. C.
 - 5. Blades:
 - Multiple or single blade. a.
 - Parallel- or opposed-blade design. b.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch (1.62 mm) thick.
 - Blade Axles: Galvanized steel. 6.
 - 7. Bearings:

- a. Stainless-steel sleeve.
- Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- B. Jackshaft:
 - 1. Size: 1-inch (25-mm) diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- C. Damper Hardware
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zinc-plated steel, and a 3/4-inch (19-mm) hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.5 MANUAL VOLUME DAMPERS (REMOTE ACTUATED)

- A. Standard, Steel, Manual Volume Dampers:
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. METALAIRE, Inc.
 - Nailor Industries Inc.
 - d. Pottorff; a division of PCI Industries, Inc.
 - e. Ruskin Company.
 - 2. Standard leakage rating.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat-shaped, galvanized-steel channels, 0.064-inch (1.62-mm) minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Radial-Twist
 - Blade Axles: Galvanized steel.
 - 7. Tie Bars and Brackets: Galvanized steel.
- B. Damper Hardware
 - 1. Provide 60" cable, field cut to terminate at face of service diffuser.
 - 2. Cable actuated with hexagonal nut driver.

2.6 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Duro Dyne Inc.
 - 2. Flexmaster U.S.A., Inc.
 - 3. Greenheck Fan Corporation.
 - 4. METALAIRE, Inc.
 - 5. Nailor Industries Inc.
 - 6. NCA Manufacturing, Inc.
 - 7. Ruskin Company.
- B. Low-leakage rating, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

- C. Frames:
 - 1. Angle shaped.
 - 2. Galvanized-steel channels, 0.064 inch (1.62 mm) thick.
 - Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 8 inches (200 mm).
 - Opposed-blade design.
 - 3. Galvanized Stainless steel.
 - 4. 0.064 inch (1.62 mm) thick.
 - Blade Edging: Closed-cell neoprene edging.
- E. Blade Axles: 1/2-inch- (13-mm-) diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - Operating Temperature Range: From minus 40 to plus 200 deg F (minus 40 to plus 93 deg C).
- F. Bearings:
 - Oil-impregnated bronze.
 - 2. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.7 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. METALAIRE, Inc.
 - 3. Nailor Industries Inc.
 - 4. NCA Manufacturing, Inc.
 - 5. Pottorff; a division of PCI Industries, Inc.
 - 6. Prefco; Perfect Air Control, Inc.
 - 7. Ruskin Company.
- B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 5-inch wg static pressure class and minimum 4000-fpm (20-m/s) velocity.
- D. Fire Rating:1-1/2] hours.
- E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-(0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch (1.3 or 3.5 mm) thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.

2.8 FLANGE CONNECTORS

- A. Description: Roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.9 TURNING VANES

- A. Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall.
- E. Vane Construction: Single wall for ducts up to 48 inches (1200 mm) wide and double wall for larger dimensions.

2.10 DUCT-MOUNTED ACCESS DOORS

- A. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches.
 - d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Four hinges and two compression latches with outside and inside handles.

2.11 FLEXIBLE CONNECTORS

- A. Materials: Flame-retardant or noncombustible fabrics.
- B. Coatings and Adhesives: Comply with UL 181, Class 1.
- C. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

2.12 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Coordinate subparagraphs below with Division 23 Section "Metal Ducts." Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - On both sides of duct coils.
 - 2. Downstream from manual volume dampers, control dampers, and equipment.
 - 3. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 4. At each change in direction and at maximum 50-foot (15-m) spacing.
 - 5. Upstream of turning vanes.
 - 6. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
 - 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
 - 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
 - 5. Body Access: 25 by 14 inches (635 by 355 mm).
 - 6. Body plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.

- M. For fans developing static pressures of 5-inch wg (1250 Pa) and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- N. Install duct test holes where required for testing and balancing purposes.
- O. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch (6-mm) movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

SECTION 23 3423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - In-line centrifugal fans.

1.3 PERFORMANCE REQUIREMENTS

A. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- D. UL Standard: Power ventilators shall comply with UL 705.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.
- B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

A. Coordinate size and location of structural-steel support members.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: Two set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 IN-LINE CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Twin City
 - 2. Greenheck.
 - 3. Loren Cook Company.
- B. Description: In-line, direct-driven centrifugal fans consisting of housing, wheel, outlet guide vanes, fan shaft, bearings, motor and disconnect switch, drive assembly, mounting brackets, and accessories.
- C. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- D. Direct-Driven Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- E. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- F. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
- G. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 - 3. Companion Flanges: For inlet and outlet duct connections.
 - 4. Fan Guards: 1/2- by 1-inch (13- by 25-mm) mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 - 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.2 MOTORS

- A. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
- B. Enclosure Type: Totally enclosed, fan cooled.

2.3 SOURCE QUALITY CONTROL

- A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Support units using elastomeric mounts having a static deflection of 1 inch (25 mm)
- C. Install units with clearances for service and maintenance.
- D. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
 - 11. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

SECTION 23 3713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Rectangular and square ceiling diffusers.
 - 2. Louver face diffusers.
 - 3. Linear bar diffusers.
 - Linear slot diffusers.
 - 5. Adjustable bar registers and grilles.
 - 6. Fixed face registers and grilles.
 - 7. Linear bar grilles.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. See units specified on drawings
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. METALAIRE, Inc.
 - b. Nailor Industries Inc.
 - c. Titus.
- B. All diffusers, registers and grilles shall be of aluminum construction.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

SECTION 23 5523 - GAS-FIRED RADIANT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes gas-fired, tubular infrared radiant heaters and associated GAS PIPING.

1.2 SUBMITTALS

- A. Product Data: For each type of gas-fired radiant heater indicated. Include rated capacities, operating characteristics, and accessories.
- B. Product Data: For type of pipe and fittings.
- C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- D. Field quality-control test reports.
- E. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of gas-fired radiant heater that fails in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TUBULAR INFRARED HEATERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - Gas-Fired Products Inc.; Space-Ray Div.
 - 2. Reznor/Thomas & Betts Corporation.
 - 3. Schwank Inc.
- D. Description: Factory assembled, piped, and wired, and complying with ANSI Z83.20/CSA 2.34.
- E. Fuel Type: Design burner for natural gas having characteristics same as those of gas available at Project site.

- F. Combustion Tubing: 4-inch- (100-mm-) diameter steel with high-emissivity, high-temperature, corrosion-resistant external finish.
- G. Tubing Connections: Stainless-steel couplings or flared joints with stainless-steel draw bolts.
- H. Reflector: Polished aluminum, 97 percent minimum reflectivity, with end caps. Shape to control radiation from tubing for uniform intensity at floor level with 100 percent cutoff above centerline of tubing. Provide for rotating reflector or heater around a horizontal axis for minimum 30-degree (0.52-radian) tilt from vertical.
 - 1. Reflector Extension Shields: Same material as reflectors, arranged for fixed connection to lower reflector lip and rigid support to provide 100 percent cutoff of direct radiation from tubing at angles greater than 30 degrees (0.52 radians) from vertical.
 - 2. Include hanger kit.
- I. Burner Safety Controls:
 - 1. Gas Control Valve: Single-stage, regulated redundant 24-V ac gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 - 2. Blocked Vent Safety: Differential pressure switch in burner safety circuit to stop burner operation with high discharge or suction pressure.
 - 3. Control Panel Interlock: Stops burner if panel is open.
 - 4. Indicator Lights: Burner-on indicator light.
- J. Burner and Emitter Type: Gravity-vented power burner, with the following features:
 - 1. Emitter Tube: 4-inch- (100-mm-) diameter, hot-rolled-steel tubing with sight glass for burner and pilot flame observation.
 - 2. Venting: Connector at exit end of emitter tubing for vent-pipe connection a. Vent Terminal: Vertical and/orHorizontal. (See plans)
 - 3. Burner/Ignition: Power gas burner with electronic spark and electronic flame safety.
 - 4. Burner/Ignition: Stainless-steel burner cup and head with balanced-rotor draft fan and spark ignition with electronic flame supervision.
 - 5. Combustion-Air Connection: Duct connection for combustion air to be drawn directly from outdoors by burner fan.
- K. Capacities and Characteristics:
 - 1. Gas Input: See Mech. Schedules
 - 2. Gas Output: See Mech. Schedules
 - 3. Fuel Supply Connection: See Mech. Schedules
 - a. Volts: 120 V.
 - b. Phase: Single.
 - c. Hertz: 60.

2.2 CONTROLS

- A. Thermostat: 2-stage, wall-mounting type with 50 to 90 deg F (10 to 32 deg C) operating range and fan on switch.
 - 1. Control Transformer: Integrally mounted.

2.3 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.

- 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

2.4 MANUAL GAS SHUTOFF VALVES

- A. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
 - 6. Service Mark: Valves 1-1/4 inches (32 mm) to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.
- B. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated brass.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig (4140 kPa).
 - 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install and connect gas-fired radiant heaters and associated fuel and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written installation instructions.
- B. Suspended Units: Suspend from substrate using chain hanger kits and building attachments.
- C. Maintain manufacturers' recommended clearances to combustibles.
- D. Install piping adjacent to gas-fired radiant heaters to allow service and maintenance.
- E. Gas Piping: Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.

- F. Vent Connections: Comply with manufacturers written instructions.
- G. Electrical Connections: Comply with applicable requirements in Division 26 Sections.
 - 1. Install electrical devices furnished with heaters but not specified to be factory mounted.
- H. Adjust initial temperature set points.
- I. Adjust burner and other unit components for optimum heating performance and efficiency.

3.2 INDOOR PIPING SCHEDULE

- A. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.

3.3 PAINTING AND IDENTIFICATION

A. Prep, primer and paint all interior and exterior gas piping yellow, provide labels identifying natural gas piping and pressure. Lettering shall stenciled in black paint on piping every 15 ft. minimum and on either side of walls.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections: Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

SECTION 23 5533 - GAS-FIRED UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes gas-fired unit heaters.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of gas-fired unit heater.
 - 1. Include rated capacities, operating characteristics, and accessories.
- B. Shop Drawings: For gas-fired unit heaters. Include plans, elevations, sections, and attachment details.
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural members to which equipment will be attached.
 - 2. Items penetrating roof and the following:
 - a. Vent and gas piping rough-ins and connections.
- B. Seismic Qualification Certificates: For gas-fired unit heaters, accessories, and components, from manufacturer.
- C. Field quality-control reports.
- D. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace heat exchanger of gas-fired unit heater that fails in materials or workmanship within specified warranty period.
 - 1. Warranty Period: [Two] [Five] <Insert number> years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Gas-fired unit heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - Seismic Fabrication Requirements: Fabricate and reinforce suspension attachments of gas-fired unit heaters, accessories mountings, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC"
 - 2. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 MANUFACTURED UNITS

- A. Description: Factory assembled, piped, and wired, and complying with ANSI Z83.8/CSA 2.6.
- B. Gas Type: Design burner for propane gas having characteristics same as those of gas available at Project site.
- C. Type of Venting: Power vented.
- D. Housing: Steel, with integral draft hood and inserts for suspension mounting rods.
 - 1. External Casings and Cabinets: Powder coating over corrosion-resistant-treated surface.
 - 2. Discharge Louvers: Independently adjustable, horizontal blades.

E. Accessories:

- 1. Four-point suspension kit.
- 2. Power Venter: Centrifugal aluminized-steel fan, with stainless-steel shaft; 120-V ac motor.

- 3. Concentric, Terminal Vent Assembly: Combined combustion-air inlet and power-vent outlet with wall or roof caps. Include adapter assembly for connection to inlet and outlet pipes, and flashing for wall or roof penetration.
- F. Heat Exchanger: Stainless steel.
- G. Burner Material: Stainless steel.
- H. Propeller Unit Fan:
 - 1. Aluminum propeller blades riveted to heavy-gage steel spider bolted to cast-iron hub, dynamically balanced, and resiliently mounted.
 - Fan-Blade Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
- I. Centrifugal Unit Fan:
 - 1. Steel, centrifugal fan dynamically balanced and resiliently mounted.
 - 2. Belt-Driven Drive Assembly:
 - a. Resiliently mounted to housing, with the following features:
 - 1) Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2) Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3) Pulleys: Cast-iron, adjustable-pitch motor pulley.
- J. Motors:
 - Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Efficiency: Premium efficient.
- K. Controls: Regulated redundant gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 - 1. Gas Control Valve: Modulating.
 - 2. Ignition: Electronically controlled electric spark with flame sensor.
 - 3. Fan Thermal Switch: Operates fan on heat-exchanger temperature.
 - 4. Vent Flow Verification: Differential pressure switch to verify open vent.
 - 5. Control transformer.
 - 6. High Limit: Thermal switch or fuse to stop burner.
 - 7. Wall-Mounted Thermostat:
 - Fan on-off-automatic switch.
 - b. 24-V ac.
 - c. 50 to 90 deg F (10 to 32 deg C) operating range.
- L. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and connect gas-fired unit heaters and associated gas and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written instructions.

3.2 EQUIPMENT MOUNTING

- A. Suspended Units: Suspend from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.
- B. Substrate-Mounted Units: Provide supports connected to substrate. Secure units to supports.
 - Spring hangers are specified in Section 230548 "Vibration and Seismic Controls for HVAC.
 - 2. Threaded Rods, Spring Hangers, and Building Attachments: Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 3. Anchor the unit to resist code-required horizontal acceleration.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to gas-fired unit heater, allow space for service and maintenance.
- C. Gas Piping: Comply with Section 221124 Facility Liquefied-Petroleum Gas Piping. Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.
- D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 2. Verify bearing lubrication.
 - 3. Verify proper motor rotation.

- 4. Test Reports: Prepare a written report to record the following:
 - a. Test procedures used.
 - b. Test results that comply with requirements.
 - c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Gas-fired unit heater will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Adjust burner and other unit components for optimum heating performance and efficiency.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain gas-fired unit heaters.

SECTION 23 7219 - FIXED PLATE AIR-TO-AIR ENERGY RECOVERY UNIT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes fixed-plate, sensible and total, heat exchangers.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For air-to-air energy recovery equipment.
 - 1. Include plans, elevations, sections, and **mounting** and **attachment** details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, elevations, and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.
- B. Seismic Qualification Data: Certificates, for air-to-air energy recovery equipment, accessories, and components, from manufacturer.
- C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of air-to-air energy recovery equipment that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Fixed-Plate Total Heat Exchangers: **10** years.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of unit components.
- C. ASHRAE Compliance:
 - 1. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
 - 2. Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat/Energy Exchangers."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

2.2 FIXED-PLATE SENSIBLE HEAT EXCHANGERS

- A. Manufacturers
 - Greenheck.
 - 2. Munters.
 - 3. EAS.
- B. Casing: Galvanized steel with duct collars.
- C. Plates: Evenly spaced, sealed, and arranged for cross airflow.
 - 1. Plate Material: **Embossed aluminum**.
 - 2. Plate Coating: None
- D. Bypass Plenum: Within casing, with gasketed face-and-bypass dampers having operating rods extended outside casing.
- E. Maximum Differential Pressure: Suitable for maximum 6-inch wg
- F. Maximum Temperature: Suitable for maximum 194 deg F.

2.3 SOURCE QUALITY CONTROL

A. AHRI 1060 Certification: Certified according to AHRI 1060.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fixed-plate heat exchangers so supply and exhaust airstreams flow in opposite directions.
 - Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to heat exchanger. Access doors and panels are specified in Section 233300 "Air Duct Accessories."
- B. Equipment Mounting:
 - 1. Install air-to-air energy recovery using factory mounting points and threaded rods. Provide with spring vibration isolator at each connection point to structure.
- C. Install seismic restraints according to manufacturers' written instructions.
- Install units with clearances for service and maintenance.
- E. Comply with requirements for ductwork specified in Section 233113 "Metal Ducts."
- F. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.2 PIPING CONNECTIONS

- A. Comply with requirements for piping specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to unit, allow space for service and maintenance.
- C. Connect piping to units mounted on vibration isolators with flexible connectors.

3.3 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260529 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 250526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch (13 mm) high.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper water wash control and unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- D. Air-to-air energy recovery equipment will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.

- 3. Verify that unit is secure on mountings and supporting devices and that connections to electrical systems are complete. Verify that proper thermal-overload protection is installed.
- 4. Verify water wash mechanism operation.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize water wash motor and verify proper operation of motor and water wash system.
 - 2. Measure and record motor electrical values for voltage and amperage.

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-to-air heat recovery unit, clean unit to remove foreign material and construction dirt and dust.

3.8 DEMONSTRATION

A. **Engage a factory-authorized service representative to train** Owner's maintenance personnel to adjust, operate, and maintain fixed-plate air-to-air energy recovery units.

SECTION 23 8125 - SPLIT-SYSTEM HEAT PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes split-system air-conditioning and heat pump units consisting of separate evaporator-fan and compressor-condenser components. Units are designed for exposed or concealed mounting, and may be connected to ducts.

1.2 SUBMITTALS

- A. Product Data: For each unit indicated. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Energy-Efficiency Ratio: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."
- C. Coefficient of Performance: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."
- D. Units shall be designed to operate with HCFC-free refrigerants.

1.4 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace split-system air-conditioning units that fail in materials and workmanship within five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier.
 - 2. Trane.
 - 3. Johnson/York
- B. Cooling coils associated with furnace shall be by furnace manufacturer.

2.2 EVAPORATOR-FAN UNIT

- A. Concealed Unit Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 1. Insulation: Faced, glass-fiber duct liner.
 - 2. Drain Pans: Galvanized steel, with connection for drain; insulated.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Evaporator Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
- D. Fan Motor: Multispeed.
- E. Filters: Permanent, cleanable.

2.3 AIR-COOLED, HEAT PUMP UNIT

- A. Casing steel, finished with baked enamel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
- B. Compressor: Hermetically sealed scroll type with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - Refrigerant Charge: R-410A.
- C. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with liquid subcooler.
- D. Heat Pump Components: Reversing valve and low-temperature air cut-off thermostat.
- E. Fan: Aluminum-propeller type, directly connected to motor.
- F. Motor: Permanently lubricated, with integral thermal-overload protection.
- G. Low Ambient Kit: Permits operation down to 45 deg F (7 deg C).
- H. Mounting Base: Polyethylene.

2.4 ELECTRIC RESISTANCE COILS

- A. Testing Agency Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Coil Assembly: Comply with UL 1995.
- C. Heating Elements: Coiled resistance wire of 80 percent nickel and 20 percent chromium; surrounded by compacted magnesium-oxide powder in tubular-steel sheath; with spiral-wound, copper-plated, steel fins continuously brazed to sheath.
- D. High-Temperature Coil Protection: Disk-type, automatically reset, thermal-cutout, safety device; serviceable through terminal box without removing heater from duct or casing.
 - 1. Secondary Protection: Load-carrying, manually reset or manually replaceable, thermal cutouts; factory wired in series with each heater stage.
 - 2. Airflow proving switch.

2.5 ACCESSORIES

- A. Thermostat: Low voltage with subbase to control heat pump operations.
 - 1. Thermostat shall be BACNet Compatible TCS Ubiquistat or equal.

- 2. Connect to BACNet Controller in Mechanical Room
- B. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
- C. Additional Monitoring:
 - 1. Monitor constant and variable motor loads.
 - 2. Monitor variable frequency drive operation.
 - 3. Monitor economizer cycle.
 - 4. Monitor cooling load.
 - 5. Monitor air distribution static pressure and ventilation air volumes.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- B. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base; 4 inches (100 mm) larger on each side than unit. Concrete, reinforcement, and formwork are specified in Specification Section "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.
- C. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
- D. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 1 inch (25 mm).

3.2 CONNECTIONS

- A. Connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.
- B. Connect supply and return water coil with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.
- C. Connect supply and return condenser connections with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.
- D. Install piping adjacent to unit to allow service and maintenance.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- C. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Remove malfunctioning units, replace with new components, and retest.
- D. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

SECTION 23 8126 - DUCTLESS MINI SPLIT SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes split-system air-conditioning and heat pump units consisting of separate evaporator-fan and compressor-condenser components. Units are designed for exposed or concealed mounting, and may be connected to ducts.

1.2 SUBMITTALS

- A. Product Data: For each unit indicated. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Energy-Efficiency Ratio: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."
- C. Coefficient of Performance: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."
- D. Units shall be designed to operate with HCFC-free refrigerants.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace split-system air-conditioning units, including all parts and labor that fail in materials and workmanship within two years from date of Substantial Completion.
 - Compressor within five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Air Conditioning; Div. of Carrier Corp.
 - 2. Mitsubishi Electric Sales Canada, Inc.
 - 3. Trane Co. (The); Unitary Products Group.
 - 4. York International Corp
 - 5. Fujutsu.
 - 6. LG

2.2 EVAPORATOR-FAN UNIT

- A. Concealed Unit Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 1. Insulation: Faced, glass-fiber duct liner.

- 2. Drain Pans: Galvanized steel, with connection for drain; insulated.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Evaporator Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
- D. Fan Motor: Multispeed.
- E. Filters: Permanent, cleanable.

2.3 AIR-COOLED, COMPRESSOR-CONDENSER UNIT

- A. Casing steel, finished with baked enamel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
- B. Compressor: Hermetically sealed scroll type with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - 1. Refrigerant Charge: R-410A.
- C. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with liquid subcooler.
- D. Heat Pump Components: Reversing valve and low-temperature air cut-off thermostat.
- E. Fan: Aluminum-propeller type, directly connected to motor.
- F. Motor: Permanently lubricated, with integral thermal-overload protection.
- G. Low Ambient Kit: Permits operation down to 20 deg F.
- H. Mounting Base: Polyethylene.

2.4 ACCESSORIES

- A. Thermostat: Infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Night set Up/ Setback
 - 4. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 5. Fan-speed selection including auto setting.
- B. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
- C. Automatic Reset Kit.
- D. Additional Monitoring:
 - 1. Monitor constant and variable motor loads.
 - 2. Monitor variable frequency drive operation.
 - 3. Monitor economizer cycle.
 - 4. Monitor cooling load.
 - 5. Monitor air distribution static pressure and ventilation air volumes.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- B. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base; 4 inches (100 mm) larger on each side than unit. Concrete,

- reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.
- C. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
- D. Install roof-mounted, compressor-condenser components on treated 4x4 timbers, with isolator pads.

3.2 CONNECTIONS

- A. Connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.
- B. Install piping adjacent to unit to allow service and maintenance.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- C. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Remove malfunctioning units, replace with new components, and retest.
- D. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

SECTION 23 8239 - ELECTRIC UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cabinet unit heaters with centrifugal fans and hot-water coils.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include location and size of each field connection.
 - 4. Include details of anchorages and attachments to structure and to supported equipment.
 - 5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 - 6. Indicate location and arrangement of piping valves and specialties.
 - 7. Indicate location and arrangement of integral controls.
 - 8. Wiring Diagrams: Power, signal, and control wiring.
- C. Samples: For each exposed product and for each color and texture specified.
- D. Seismic Qualification Data: Submit certification that cabinet unit heaters, accessories, and components will withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC."
- E. Field quality-control reports.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Provide products by one of the following Manufacturers
 - 1. Trane
 - 2. Qmark
 - 3. Markel

2.2 DESCRIPTION

A. Factory-assembled and -tested unit complying with AHRI 440.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- C. Seismic Performance: Cabinet unit heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.4 CABINETS

- A. Material: Steel with [factory prime coating, ready for field painting] [baked-enamel finish with manufacturer's standard paint, in color selected by Architect] [baked-enamel finish with manufacturer's custom paint, in color selected by Architect].
 - 1. Vertical Unit, Exposed Front Panels: Minimum 0.0677-inch- (1.7-mm-) thick galvanized]sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 - 2. Recessed Flanges: Steel, finished to match cabinet.

2.5 COILS

- A. Testing Agency Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Coil Assembly: Comply with UL 1995.
- C. Heating Elements: Coiled resistance wire of 80 percent nickel and 20 percent chromium; surrounded by compacted magnesium-oxide powder in tubular-steel sheath; with spiral-wound, copper-plated, steel fins continuously brazed to sheath.
- D. High-Temperature Coil Protection: Disk-type, automatically reset, thermal-cutout, safety device; serviceable through terminal box without removing heater from duct or casing.
 - 1. Secondary Protection: Load-carrying, manually reset or manually replaceable, thermal cutouts; factory wired in series with each heater stage.

2.6 CONTROLS

- A. Fan and Motor Board: Removable.
 - Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Wiring Terminations: Connect motor to chassis wiring with plug connection.

B. Basic Unit Controls:

- 1. Control voltage transformer.
- 2. Wall-mounted thermostat with the following features:
 - a. Heat-off switch.
 - b. Fan on-auto switch.
 - c. Retain first subparagraph below if multispeed motors are specified.

- d. Manual fan-speed switch.
- e. Adjustable deadband.
- f. Exposed set point.
- g. Exposed indication.
- h. Deg F indication.
- i. Input data includes room temperature and occupied and unoccupied periods.
- j. Output data includes room temperature, supply-air temperature, entering-water temperature, operating mode, and status.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Section 079200 "Joint Sealants."
- B. Install cabinet unit heaters to comply with NFPA 90A.
- C. Suspend cabinet unit heaters from structure with elastomeric hangers. Vibration isolators are specified in Section 230548 "Vibration and Seismic Controls for HVAC."
- D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- E. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 232113 "Hydronic Piping," Section 232116 "Hydronic Piping Specialties," Section 232213 "Steam and Condensate Heating Piping," and Section 232216 "Steam and Condensate Heating Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect piping to cabinet unit heater's factory, hot-water piping package. Install the piping package if shipped loose.
- D. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
- E. Comply with safety requirements in UL 1995.
- F. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of cabinet unit heater. Hydronic specialties are specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties."
- G. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

H. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.