DIVISION 23

HEATING, VENTILATING AND AIR CONDITIONING

RELATED DOCUMENTS:

The Drawings and general provisions of the contract, including The General Conditions and Supplementary Conditions, Forms and Division-1 Specification sections, apply to the work of this Division.

DESCRIPTION OF WORK:

<u>The Mechanical Contractor</u> shall be responsible for the installation and connection of all items of mechanical work including those items supplied by other contractors that require mechanical connections.

<u>The Mechanical Contractor</u> shall coordinate and cooperate with other contractors for the satisfactory installation and completion of the project.

<u>The Mechanical Contractor</u> shall furnish all materials, labor, transportation, equipment and plant necessary to complete and install all mechanical items and equipment specified in this Division and shown on the drawings.

STANDARDS AND CODES:

All work under this Division shall comply with all local, state, regional and/or national building codes or whichever building code that governs construction in that particular area. All reference specifications, standards, and codes referred to herein shall refer to the latest edition. In case of conflict between the reference specifications, standards, or codes, the reference having the more stringent requirements shall govern.

SHOP DRAWINGS, MANUFACTURER'S LITERATURE, SCHEDULES, AND SAMPLES:

See Division 1 Section 013300 – Submittal Procedures.

<u>Shop Drawings, Manufacturer's Literature, and Schedules</u> shall be submitted electronically unless permitted otherwise by the Architect.

<u>Samples:</u> Submit three (3) samples of items called for by the Architect and Owner. One sample will be returned and one sample will be retained by the Architect for his records and one will be provided to the Owner.

All samples shall be clearly labeled with Manufacturer's Name, Address, Identifying Number, Finish and Color. Improperly identified samples will be rejected.

<u>Additional Submittals:</u> The Architect may require additional supporting shop drawings, manufacturer's literature, schedules and samples to be furnished as required by the General Contractor, Subcontractors, and Materials Suppliers.

CERTIFICATION:

If required, furnish affidavits from the manufacturers certifying that the materials or products delivered to the project meet the requirements as specified herein. Certification shall not relive the responsibility of complying with any additional requirements as specified herein.

PROJECT COMPLETION:

Remove all unused material, equipment, trash, etc., and leave all areas clean. Repair or remove and replace any damaged or improperly installed, defective or improperly finished items as directed by the Architect at no additional expense to the Owner. Project shall be complete and ready for use by Owner.

IMPORTANT NOTE: REFER TO DIVISION-1 FOR APPLICABLE ALLOWANCES REQUIRED FOR WORK UNDER THIS DIVISION.

SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1: GENERAL

1.1 RELATED PROVISIONS

- a. The requirements of the general conditions and of Division 01 apply to that portion of the work specified in this section.
 - b. These specifications and the accompanying drawings shall include the furnishing of all labor, tools, materials, fixtures, transportation, appurtenances and service necessary and incidental to the installation of a complete and operative system as indicated and intended on the Drawings and as herein specified.
- c. Contractor shall coordinate the work and equipment of this division with the work and equipment specified elsewhere in order to assure a complete and satisfactory installation. Work such as excavation, backfill, concrete, flashing, etc., which is required by the work of this Division of the Specifications, shall be provided by this Division unless otherwise indicated.
- d. Minor details not usually shown or specified, but necessary for the proper installation and operation, shall be included in the work, the same as if herein specified or shown.

1.2 DESCRIPTION OF THE WORK:

- a. Work included under this Division includes installation of a new cooling and heating system and associated electrical system and controls system. The systems shall be installed complete, with boilers, piping, chiller, pumps and auxiliaries as hereinafter called for. Miscellaneous items including conduits, concrete slab, etc., are to be provided as indicated.
 - b. It shall be the responsibility of the Contractor to provide a complete and operating system according to the true intent and meaning of the plans and specifications and all pipe, controls and equipment, etc.

1.3 DEFINITION

a. The word "Contractor" as used in this Section of the Specifications refers to the HVAC Contractor unless specifically noted otherwise. The word "provide" means furnish, fabricate, complete, install, erect, including labor and incidental materials, necessary to complete in place and ready for operation or use the items referred to or described herein, and/or as shown or referred to on the Contract Drawings.

1.4 HVAC CONTRACTOR'S QUALIFICATIONS

- a. It is assumed that the contractor has had sufficient general knowledge and experience to anticipate the needs for a construction of this nature. The contractor shall furnish all items required to complete the construction in accordance with reasonable interpretation of the intent of the Drawings and Specifications. Any minor items required by Code, law or regulations shall be provided whether or not specified or specifically shown.
- b. All work must be done by first class and experienced mechanics properly supervised, and it is understood that the Engineer has the right to stop any work that is not being properly done and has the right to demand that any incompetent workman be removed from the job and a competent workman be substituted therefor.
- c. All work must be done in strict accordance with standards of AME, ASHRAE and the building laws of all character in force in the locality where the apparatus is being installed. All work must also be in accordance with rules and regulations of the National Board of Fire Underwriters.

1.5 DUTIES OF CONTRACTOR

a. Contractor is responsible for familiarizing himself with the details of the construction of the building. Work under these specifications installed improperly or which requires changing due to improper reading or interpretation of building plans

- shall be corrected and changed as directed by Engineer without additional cost to the Owner.
- b. Contractor shall leave the premises in a clean and orderly manner upon completion of work and shall remove from premises all debris that has accumulated during the progress of the work. The HVAC Contractor shall have the permanent HVAC systems in sufficient readiness for furnishing temporary climatic control at the time the building is enclosed. The HVAC systems control shall maintain climatic control throughout the enclosed portion of the building sufficient to allow completion of the interior finishers of the building. A building shall be considered enclosed when it has windows installed and when doorways and other openings have protection which will provide reasonable climatic control. The appropriate climatic condition shall be jointly determined by the Contractor and the Architect. Use of the equipment in this manner shall in no way affect the warranty requirements of the Contractor.

1.6 CODES, RULES, PERMITS AND FEES

- a. The contractor shall give all necessary notices, obtain all permits and pay all government sales taxes, fees and other costs including utility connections or extension, in connection with his work; file all necessary plans, prepare all documents and obtain all necessary approvals of all governmental departments having jurisdiction; obtain all required certificates for inspection for his work and deliver same to the Architect before request for acceptance and final payment for the work.
- b. The contractor shall include in the work, without extra cost to the Owner, any labor, materials, services, apparatus, ordinances, rules and regulations as required to complete the project in accordance with the intent of the drawings.
- c. All materials furnished, and all work installed shall comply with the National Fire Codes of the National Fire Protection Association, with the requirements of all governmental departments having jurisdiction.

1.7 SURVEYS AND MEASUREMENTS

- a. The contractor shall base all measurements, both horizontal and vertical, from established benchmarks. All work shall agree with these established lines and levels. Verify all measurements at the site and check correctness of same as related to the work.
- b. Should the contractor discover any discrepancy between actual measurements and those indicated, which prevents following good practice or the intent of the drawings and Specifications, he shall notify the Architect and shall not proceed with his work until he has received instructions from the Architect.

1.8 PLANS

a. Except where dimensions are shown, mechanical plans are diagrammatic; see Architectural drawings for building dimensions and locations of windows, doors, ceiling diffusers, lights, etc. The plans are not intended to show each and every fitting, valve, pipe or pipe hanger, or a complete detail of all the work to be done but are for the purpose of illustrating the type of system, pipe and duct sizes, etc. and special conditions considered necessary for the experienced mechanic to take off his material and lay out his work. Contractor shall be responsible for taking such measurements as may be necessary at the job and adapting his work to the local conditions.

1.9 DRAWINGS AND SPECIFICATIONS

a. Plans are diagrammatic, and it sometimes occurs those conditions exist in buildings which require certain changes in drawings and specifications. In event that such changes are necessary, the same are to be made by Contractor without expense to the Owner, provided however, that such changes, do not require furnishing more

- material or performing more labor than the true intent of the drawings and specifications demand.
- b. It is understood that while the drawings are to be followed as closely as circumstances will permit, the Contractor is held responsible for the installation of the system according to the true intent and meaning of the drawings. Anything not entirely clear on the drawings or in the specifications will be fully explained if application is made to the Engineer. Should however, conditions arise where in the judgment of the Contractor certain changes would be advisable. Contractor will communicate with Engineer and secure approval of the changes before going ahead with the work.
- c. The electrical and mechanical systems for this job have been designed on the basis of the mechanical equipment listed or data given herein or on the drawings. It shall be the responsibility of the Contractor to determine that the electrical service outlets, wiring, conduit and all overcurrent protective and safety devices furnished are adequate to meet Code Requirements for the equipment which he proposes to use. Changes required in the electrical system to accommodate the proposed mechanical equipment shall be worked out and the details submitted for approval. The cost of making the necessary changes to the electrical system shall be the responsibility of the Contractor.

1.10 SHOP DRAWINGS

- a. Refer to Division 01.
- b. All items submitted to Architect for review shall bear stamp or notation indicating contractor's prior review and approval.
- c. Any Electrical or other changes required by substituted equipment to be made at no change in contract price.
- d. Submit manufacturer's certified performance data for all equipment.
- e. Coordinate installation drawings with other parts of the work, whether specified in this Division or other Divisions.
- f. Approval of shop drawings by the Engineer shall not relieve the Contractor from his obligation to provide equipment, control, and operation to the true intent of plans and specifications.
- g. The Contractor shall submit to the Engineer, within ten (10) days after approval of bids by the owner, a list indicating the manufacturer of all equipment and materials which he proposes to use. After that date, no substitution will be approved, and all items shall be as specified.

1.11 SCAFFOLDING, RIGGING, HOISTING:

a. This contractor shall furnish all scaffolding rigging, hoisting, and services necessary to erection and delivery into the premises of any equipment and apparatus furnished. Remove same from premises when no longer required.

1.12 FOUNDATIONS, SUPPORTS, PIERS, ATTACHMENTS:

a. Contractor shall furnish and install all necessary foundations, supports, pads, bases and piers required for all air conditioning equipment, piping, pumps, tanks, compressors, and for all other equipment furnished under this contract.

1.13 SLEEVES AND OPENINGS:

a. Contractor must have an experienced mechanic on the job before concrete slab floors or concrete masonry walls are poured or built into place, whose duty it shall be to locate exact positions of any and all holes necessary for future installation of his pipe work, ducts or equipment. Where pipes pass through concrete or masonry walls or floors, steel pipe sleeves shall be furnished. These shall be the same length as wall thickness and shall extend 1/2" above finished floors. Pipe sleeves in equipment

- room floors shall extend 3" above refinished floor. Pipe sleeves in equipment room floors shall extend 3" above finished floor. Sleeves shall be placed in position by this Contractor.
- b. This Contractor shall arrange for proper openings in the building to admit his equipment. If it becomes necessary to cut any portion of building to admit his equipment, portions cut must be restored to their former condition by this Contractor.
- c. This Contractor will provide duct openings or chases in masonry or concrete; however, it is this Contractor's responsibility to advise exact dimensions, shape and locations of openings required in sufficient time for the Contractor to make necessary provisions. This Contractor shall be responsible for correct size and location of each opening for his equipment through these openings.
- d. Wall openings that require a fire or smoke damper shall be made as nearly possible to the damper or duct size so that an angle frame can close the opening entirely.
- e. Where pipes or ducts penetrate floors or partitions which are fire or smoke barriers, the integrity of the barrier shall not be compromised by such penetration.

1.14 CUTTING AND PATCHING:

- a. The Contractor shall do all cutting, fitting and patching as required to install piping and equipment except openings through the roof shall be provided by the General Contractor. Patching shall be done by mechanics skilled in the various trades and work shall match the existing work.
- b. All exposed openings in walls and floors for piping shall be core drilled. Cutting of holes by hand will not be allowed.
- c. Provide all required protection including but not limited to, welding blankets, dust covers, shoring bracing and supports to maintaining structural integrity, safety and cleanliness of the work.

1.15 EXCAVATION AND BACKFILLING:

- a. All excavation and backfilling, pudding and tamping required to properly install work under this contract shall be done by this Contractor.
- b. Backfill shall be clear of rocks and trash. Backfilling shall be water tamped so as to provide firm footing for finish work and shall be maintained at proper level for duration of the Contract. No backfilling shall be done until work to be covered has been inspected. Excessive excavation material shall be deposited on site and leveled as directed by the engineer.

1.16 POURED IN PLACE CONCRETE WORK:

a. Furnish and install all concrete work required for the construction of anchors, guide bases and elsewhere as indicated on the Drawings. Refer to appropriate Section in Division 3 for specification requirements.

1.18 STORAGE OF MATERIALS:

- a. Equipment, ductwork, piping, and other equipment stored on site shall be protected from mud, dust, debris, weather, vermin, and construction traffic.
- b. Equipment, ductwork, piping, and other equipment shall be capped or otherwise covered to prevent water, dust, and debris intrusion. Cellophane membrane may be used for duct and equipment with care taken to maintain the seal integrity. Covering shall be replaced if seal is disturbed. Covering shall be removed only when necessary.
- c. Where pipe or ductwork becomes damaged by rust, dirt, dust, mud, or construction debris, it must be thoroughly cleaned and prepared to a like-new condition before installation.
- d. Porous materials such as duct liner and insulation that become saturated with water shall be discarded and replaced.

e. Any equipment and/or materials affected (including aesthetically) as a result of improper storage shall be cleaned or replaced at contractor expense.

PART 2: PRODUCTS

2.1 MATERIALS

- a. Provide equipment complete with all components and accessories necessary to its satisfactory operation.
- b. Listing of a manufacturer's name in this Division does not infer conformity to all requirements of the Contract Documents, nor waive requirements thereof.

PART 3: EXECUTION

3.1 BELT DRIVES

- a. V-belt drives shall be rated at not less than 200% of nominal motor horsepower.
- b. Motor sheaves shall be fixed pitch type.
- c. Scheduled fan static pressures are estimated. Provide one extra drive per device as required to allow adjustment to deliver scheduled air quantities against actual system resistance.
- d. Provide guards for all belt drives not enclosed within equipment housings. Provide openings in guard at driving and driven sheaves for use of revolution counter.

3.2 MAINTENANCE AND OPERATING INSTRUCTIONS

- a. Upon completion of all work, the Contractor shall furnish a complete set of operating instructions for all equipment. Such instructions shall be diagrammatic in form on heavy white paper, suitably framed, protected with glass and hung where directed by the owner. A preliminary draft of the instruction sheets shall be submitted to the engineer for approval before making same.
- b. Manufacturer's instruction books, card, etc., (to each individual piece of equipment furnished under this contract) shall be furnished to the owner. These shall contain instructions for the operation and maintenance of all equipment. Where such is not furnished by the manufacturer, the contractor shall give written instructions to the owner for the maintenance of the equipment involved.

3.3 DUCTS, PLENUM, ETC.

- a. As indicated on drawings, provide a system of ducts for supplying returning and exhausting air from various spaces. All details of the ductwork are not indicated, and the necessary bends, offsets and transformations must be furnished whether shown or not.
- b. All sheet metal ducts, casing, plenums, etc., of sizes indicated, shall be constructed from prime galvanized sheet steel, and shall be in accordance with or equal to standards set forth in latest issue of SMACNA low velocity duct manual for gauges of materials, (2" pressure), workmanship, method of fabrication and erection.
- c. All uninsulated panels of ducts over twelve inches (12") wide shall be cross-broken, except on plenums, which shall be braced with angle iron as required to prevent breathing.
- d. All ductwork must present a smooth interior and joints must be airtight. Where there is evidence of undue leakage at the joints in low pressure ducts, they shall be sealed with cement similar to Foster 30-02.
- e. Depending upon space requirements, round or square elbows may be used as required or at the Contractors option in low velocity ducts. All elbows shall be constructed for minimum pressure drop. All elbows with an inside radius less than 3/4 the width of the duct must be fitted with multiple double thickness turning vanes.
- f. No transformations or offsets shall be made with a slope greater than (7 to 1), space conditions permitting.
- g. All duct connections to and from all centrifugal fans or cabinets containing fans, shall be made with fabric equal to "Ventfab" as made by Ventfabrics, Inc., not less

- than four inches (4") long secured by peripheral iron straps holding fabric in galvanized iron, except as otherwise noted.
- h. Vertical ducts shall be supported by means of an angle iron frame riveted to the ductwork on at least two (2) sides. Horizontal runs of ductwork shall be supported on not more than 8'-0" centers as required.
- i. Manual volume and splitter dampers shall be furnished and installed where shown and where necessary for proper regulation of the air distribution. A quadrant and set screw equal to "Ventlock" #641 shall be installed for all dampers which are concealed above plaster or gypsum board ceilings, or behind the masonry construction, furnish and install concealed regulators ("Ventlock" #666) with chrome cover plate.
- j. All ductworks shall operate without chatter and vibration and shall be free from pulsations.
- k. See section 233113 for metal ductwork requirements.

3.4 ACCESS DOORS OR PANELS

- a. Provide duct access doors of approved construction at any apparatus requiring service and inspection. Doors shall suit finish in which installed.
- b. Access doors in rated walls or assemblies shall be rated as required to maintain rating of assembly. Rated access doors shall bear U.L. Label.

3.5 CLEANING DUCT SYSTEM

a. Upon complete installation of ducts, clean entire system of rubbish, plaster, dirt, etc., before installing any outlets. After installation of outlets and connections to fans are made, blow out entire systems with all control devices wide open.

3.6 ITEMS OF ELECTRICAL EQUIPMENT

- a. All electrical work shall be done by properly licensed electrical mechanics in accordance with Division 26 of the specifications under supervision of a licensed Electrical Contractor as approved by the Architect.
- b. The Electrical Contractor shall provide all power wiring to motor starter and/or disconnect switch and from starter/disconnect switch to motor. The Mechanical Contractor shall provide all control wiring, low voltage or line voltage, as required for the operation of all mechanical equipment. All control devices such as motor starters, thermostats, switches, etc. shall be provided by the Mechanical Contractor.
- c. All motor starters shall be provided with a "hand-off-auto" switch on the starter cover.
- d. All items of mechanical equipment electrically operated shall be in complete accordance with electrical division of the specifications. Mechanical equipment, other than individually mounted motors, shall be factory prewired so that it will only be necessary to bring connections to a single set of terminals.
- e. Mechanical equipment electrical components shall all be bonded together and connected to electrical system ground.
- f. All mechanical equipment shall be U.L. listed and labeled as a complete package, not through individual components or parts. Provide required 3rd party field UL listing services as required to comply.

3.7 WARRANTY AND SERVICE

- a. Upon completion of all work, the contractor shall check the system out so that all motor bearings are greased as required and have all systems balanced. He shall be responsible for original service, of starting the system up, and providing one set of replacement filters after final acceptance.
- b. Refer to equipment specifications for specific warranty information.

3.8 INSPECTION AND ACCEPTANCE TEST

- a. The project will be checked periodically as construction progresses. The contractor shall be responsible for notifying the Engineer at least 48 hours in advance when any work to be covered up is ready for inspection. No work will be covered up until approved by the Engineer.
- b. Upon completion of erection of all equipment and work specified herein and shown approved shop drawings, and at the time designated by the engineer, the contractor shall start all apparatus, making necessary tests as directed and as specified herein, and make adjustments of all parts of all equipment before acceptance of equipment by the owner. The contractor must demonstrate to the owner, by performance, that all equipment operates as specified and meets the guarantee called for.
- c. Tests shall include satisfactory evidence that all systems operate as called for on the drawings, and that all pieces of equipment operate at specified ratings under specified operating conditions.
- d. The contractor shall furnish all fuel and power required for these purposes and provide the proper and necessary help required to operate the system while tests are being made.
- e. All drainage piping shall be tested by filling with water to a point 10' above the underground drains or to point of discharge to grade and let stand thus filled for 3 hours.
- f. Tests on all pipe work shall be subject to the inspection of the Engineer. He shall be given 24-hours notice when a section pipe is to be tested and the test shall not be removed until permission is given by the Engineer.

3.9 AS BUILT DRAWINGS

b. This contractor shall keep on the job at all times, a clean set of contract drawings in blueprint form. As the job progresses, any and all deviations from the arrangements, piping runs, equipment locations, etc., shown on the bid prints shall be marked on this set with red ink. These prints shall not be used for any other purpose than to be marked up as "As-Built" Drawings.

END OF SECTION 230500

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513

SECTION 230529 – HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for HVAC system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Equipment supports.
- B. Related Sections include the following:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-protection piping.
 - 3. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Fiberglass pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Powder-actuated fastener systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Pipe stands. Include Product Data for components.
 - 4. Equipment supports.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel.", AWS D1.3, "Structural Welding Code--Sheet Steel.", AWS D1.4, "Structural Welding Code--Reinforcing Steel." and ASME Boiler and Pressure Vessel Code: Section IX.
- B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."

- 3. AWS D1.3, "Structural Welding Code--Sheet Steel."
- 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
- 5. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Material: Carbon Steel
- C. Coating: Galvanized
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- C. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

- 3.1 HANGER AND SUPPORT APPLICATIONS
 - A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
 - B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
 - C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
 - D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
 - E. Use padded hangers for piping that is subject to scratching.
 - F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 3. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 4. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
 - H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
 - I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.

- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 10. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 11. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 12. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 13. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.
- 3.2 HANGER AND SUPPORT INSTALLATION
 - A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
 - B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.

- 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- M. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood inserts.
 - 6. Insert Material: Length at least as long as protective shield.
 - 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 2".

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 230529

SECTION 230548 – VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Freestanding and restrained spring isolators.
 - 4. Housed spring mounts.
 - 5. Spring hangers.
 - 6. Spring hangers with vertical-limit stops.
 - 7. Seismic snubbers.
 - 8. Restraining braces and cables.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.

1.4 PERFORMANCE REQUIREMENTS

- A. The Mechanical Contractor shall be responsible for providing restraints to resist the earthquake effects on the mechanical system. The requirements for these restraints are found in the International Building Code and ASCE 7.
- B. The Mechanical Contractor shall refer to the latest edition of the "Seismic Restraint Manual Guidelines for Mechanical System" published by SMACNA for guidelines to determine the correct restraints for sheet metal ducts, piping, and conduit, etc.
- C. The Mechanical Contractor shall retain the services of a Professional Structural Engineer registered in the State of North Carolina to design seismic restraint elements required for this project. The engineer's computations, bearing his professional seal, shall accompany shop drawings which show Code compliance. Computations and shop drawings shall be submitted for review prior to the purchasing of materials, equipment systems, and assemblies.
- D. The professional engineer retained by the Mechanical Contractor for seismic restraint calculations shall visit the job site upon completion of the seismic restraint installation. This Engineer shall provide in writing verification of compliance with the approved seismic submittal. This verification shall bear the Engineer's professional seal. Job site inspection by other than this Engineer is not acceptable. This engineer shall also be responsible for any required special inspections and associated documentation related to seismic restraints.
- E. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the International Building Code (Chapter 16) and ASCE 7, as determined by the project Structural Engineer of record.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the International Building Code (Chapter 16) and ASCE 7.
 - 3. Seismic Design Category: D (verify with contract documents).
 - a. Component Importance Factor: 1.5
 - b. Component Response Modification Factor.
 - c. Component Amplification Factor.
 - 4. Design Spectral Response Acceleration at Short Periods (0.2 Second).
 - 5. Design Spectral Response Acceleration at 1-Second Period.
- 1.5 SUBMITTALS
 - A. Product Data: For the following:

- 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
- 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
- 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 22 Sections for equipment mounted outdoors.
 - 2. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
 - 3. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
 - 4. Seismic-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Division 22 Sections for equipment mounted outdoors.
 - d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
- C. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
- D. Welding certificates.
- E. Qualification Data: For professional engineer and testing agency.
- F. Review of the seismic design and shop drawings by the Engineer/Architect or his agent shall not relieve the Contractor of his responsibility to comply with the seismic or any other requirements of the Tennessee State Building Code.

1.6 QUALITY ASSURANCE

- A. The professional Engineer retained by the Mechanical Contractor for seismic restraint calculations shall visit the job site upon completion of the seismic restraint installation. This Engineer shall provide in writing verification of compliance with the approved seismic submittal. This verification shall bear the Engineer's professional seal. Job site inspection by other than this Engineer is not acceptable.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Kinetics Noise Control.
 - 2. Mason Industries.
 - 3. Vibration Eliminator Co., Inc.
 - 4. Vibration Isolation.
 - 5. Vibration Mountings & Controls, Inc.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.
- D. Restrained Mounts: All-directional mountings with seismic restraint.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.
- E. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

- 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
- 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- F. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch- thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.
 - 1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
 - 2. Base: Factory drilled for bolting to structure.
 - 3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.
- H. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- I. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
- 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 SEISMIC-RESTRAINT DEVICES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Hilti, Inc.
 - 2. Kinetics Noise Control.
 - 3. Mason Industries.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch- thick resilient cushion.
- D. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- E. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- F. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
- G. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.
- H. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.
- I. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- J. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- K. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.

- 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
- 3. Baked enamel or powder coat for metal components on isolators for interior use.
- 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Equipment Restraints:
 - 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

C. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- D. Install cables so they do not bend across edges of adjacent equipment or building structure.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- I. Drilled-in Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 22 Section "Hydronic Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
 - 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 230548

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY:

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels
 - 5. Valve tags.

1.2 SUBMITTAL:

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS:

- A. Plastic Labels for Equipment (Note: Plastic Labels utilized in a return air plenum shall be listed and approved for use in a return air plenum):
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Red.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 WARNING SIGNS AND LABELS:

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Red.
- C. Background Color: White.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS:

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction. (Note: Plastic Labels utilized in a return air plenum shall be listed and approved for use in a return air plenum):

- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, and as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS:

- A. General Requirements for Manufactured Duct Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction. (Note: Plastic Labels utilized in a return air plenum shall be listed and approved for use in a return air plenum):
- B. Self-Adhesive Duct Labels: Printed plastic with contact-type, permanent-adhesive backing.
- C. Pipe Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.5 VALVE TAGS:

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION:

- A. Clean piping and equipment surface of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
- 3.2 EQUIPMENT LABEL INSTALLATION:
 - A. Install or permanently fasten labels on each major item of mechanical equipment.
 - B. Locate equipment labels where accessible and visible.
 - C. Major mechanical equipment shall include:
 - 1. All AC units and heat pump units (split or packaged, water or air cooled)
 - 2. Fan coil units
 - 3. Fans

3.3 PIPE LABEL INSTALLATION:

- A. Piping Color-Coding: Painting of piping is specified in Division 09.
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.

- 4. At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings, omit intermediately spaced labels.
- C. Pipe Label Color Schedule:
 - 1. Refrigerant Piping, Gas Piping and Drain Piping:
 - a. Background Color: Yellow.
 - b. Letter Color: Black.

3.4 DUCT LABEL INSTALLATION:

- A. Ducting Color-Coding: Painting of piping is specified in Division 09.
- B. Locate duct labels where ducting is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 2. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 3. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 4. Near major equipment items and other points of origination and termination.
 - 5. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- C. Duct Label Color Schedule:
 - 1. Supply, Return, Exhaust and Outside Air Ducting:
 - a. Background Color: Green.
 - b. Letter Color: White.

3.5 VALVE-TAG INSTALLATION:

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; and shutoff valves. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Gas: 2 inches, round.
 - 2. Valve-Tag Color:
 - a. Refrigerant: Natural.
 - b. Gas: Natural.
 - 3. Letter Color:
 - a. Refrigerant: Black.
 - b. Gas: Black.

3.6 WARNING-TAG INSTALLATION:

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593 – TESTING, ADJUSTING AND BALANCING FOR HVAC PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems:
 - a. Constant-volume air systems.
 - 2. Reporting results of activities and procedures specified in this Section.

1.3 DEFINITIONS

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.
- C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.
- D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- E. NC: Noise criteria.
- F. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.
- G. RC: Room criteria.
- H. Report Forms: Test data sheets for recording test data in logical order.
- I. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- J. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.
- K. TAB: Testing, adjusting, and balancing.
- L. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.
- M. Test: A procedure to determine quantitative performance of systems or equipment.
- N. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 SUBMITTALS

- A. Qualification Data: Within 15 days from Contractor's Notice to Proceed, submit 4 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 45 days from Contractor's Notice to Proceed, submit 4 copies of the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- E. Sample Report Forms: Submit two sets of sample TAB report forms.
- F. Warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. TAB Firm Qualifications: Engage a TAB firm certified by AABC or NEBB or .
- B. TAB Conference: Meet with Owner's and Architect's representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items: Include at least the following:
 - a. Submittal distribution requirements.
 - b. The Contract Documents examination report.
 - c. TAB plan.
 - d. Work schedule and Project-site access requirements.
 - e. Coordination and cooperation of trades and subcontractors.
 - f. Coordination of documentation and communication flow.
- C. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems." or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."
- E. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification."
- F. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.
- G. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 7.2.2 "Air Balancing."
- H. ASHRAE/IESNA 90.1-2007 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007, Section 6.7.2.3 "System Balancing."

1.6 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.7 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.

- 2. Systems are balanced to optimum performance capabilities within design and installation limits.
- B. Special Guarantee: Provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - 1. Contract Documents are defined in the General and Supplementary Conditions of Contract.
 - 2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine Project Record Documents described in Division 01 Section "Project Record Documents."
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- G. Examine system and equipment test reports.
- H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.
- L. Examine equipment for installation and for properly operating safety interlocks and controls.
- M. Examine automatic temperature system components to verify the following:

- 1. Dampers, valves, and other controlled devices are operated by the intended controller.
- 2. Dampers and valves are in the position indicated by the controller.
- 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
- 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
- 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
- 6. Sensors are located to sense only the intended conditions.
- 7. Sequence of operation for control modes is according to the Contract Documents.
- 8. Controller set points are set at indicated values.
- 9. Interlocked systems are operating.
- 10. Changeover from heating to cooling mode occurs according to indicated values.
- N. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Automatic temperature-control systems are operational.
 - 3. Equipment and duct access doors are securely closed.
 - 4. Balance and fire dampers are open.
 - 5. Isolating and balancing valves are open and control valves are operational.
 - 6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 7. Windows and doors can be closed so indicated conditions for system operations can be

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems", NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.
 - 1. Comply with requirements in ASHRAE 62.1-2007, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

- E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling unit components.
- L. Check for proper sealing of air duct system.
- 3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS
 - A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 - 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions.
 - 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
 - 5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
 - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.
 - B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
 - C. Measure terminal outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

- D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

3.7 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Electric-Heating Coils: Measure the following data for each coil:
 - 1. Nameplate data.
 - 2. Airflow.
 - 3. Entering- and leaving-air temperature at full load.
 - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 - 5. Calculated kilowatt at full load.
 - 6. Fuse or circuit-breaker rating for overload protection.
- B. Refrigerant Coils: Measure the following data for each coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.9 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.
- 3.10 TEMPERATURE-CONTROL VERIFICATION
 - A. Verify that controllers are calibrated and commissioned.
 - B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
 - C. Record controller settings and note variances between set points and actual measurements.
 - D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).

- E. Check free travel and proper operation of control devices such as damper and valve operators.
- F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Check main control supply-air pressure and observe compressor and dryer operations.
- J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.
- K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.11 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances (code required minimums must meet or exceed rates indicated on plans):
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Minus 5 to plus 10 percent.
 - 2. Air Outlets and Inlets: minus 10 to plus 10 percent.

3.12 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.13 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB firm who certifies the report.

- 10. Table of Contents with the total number of pages defined for each section of the report.

 Number each page in the report.
- 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer, type size, and fittings.
- 14. Notes to explain why certain final data in the body of reports varies from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Position of balancing devices.
- F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data: Include the following:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - j. Number of belts, make, and size.
 - k. Number of filters, type, and size.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Outside airflow in cfm.

- g. Return airflow in cfm.
- h. Outside-air damper position.
- i. Return-air damper position.
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btuh.
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - 1. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches, and bore.
 - n. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btuh.
 - i. High-fire fuel input in Btuh.
 - j. Manifold pressure in psig.
 - k. High-temperature-limit setting in deg F.
 - 1. Operating set point in Btuh.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btuh.
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btuh.
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.
 - h. Airflow rate in cfm.
 - i. Face area in sq. ft..
 - j. Minimum face velocity in fpm.
 - 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btuh.

- b. Airflow rate in cfm.
- c. Air velocity in fpm.
- d. Entering-air temperature in deg F.
- e. Leaving-air temperature in deg F.
- f. Voltage at each connection.
- g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - Fan Data:
 - System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - g. Number of belts, make, and size.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Test apparatus used.
 - d. Area served.
 - e. Air-terminal-device make.
 - f. Air-terminal-device number from system diagram.
 - g. Air-terminal-device type and model number.
 - h. Air-terminal-device size.
 - i. Air-terminal-device effective area in sq. ft..
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.

- K. Compressor and Condenser Reports: For refrigerant side of unitary systems, stand-alone refrigerant compressors, air-cooled condensing units, or water-cooled condensing units, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Unit make and model number.
 - d. Compressor make.
 - e. Compressor model and serial numbers.
 - f. Refrigerant weight in lb.
 - g. Low ambient temperature cutoff in deg F.
 - 2. Test Data (Indicated and Actual Values):
 - a. Inlet-duct static pressure in inches wg.
 - b. Outlet-duct static pressure in inches wg.
 - c. Entering-air, dry-bulb temperature in deg F.
 - d. Leaving-air, dry-bulb temperature in deg F.
 - e. Control settings.
 - f. Unloader set points.
 - g. Low-pressure-cutout set point in psig.
 - h. High-pressure-cutout set point in psig.
 - i. Suction pressure in psig.
 - j. Suction temperature in deg F.
 - k. Condenser refrigerant pressure in psig.
 - 1. Condenser refrigerant temperature in deg F.
 - m. Oil pressure in psig.
 - n. Oil temperature in deg F.
 - o. Voltage at each connection.
 - p. Amperage for each phase.
 - q. Kilowatt input.
 - r. Crankcase heater kilowatt.
 - s. Number of fans.
 - t. Condenser fan rpm.
 - u. Condenser fan airflow rate in cfm.
 - v. Condenser fan motor make, frame size, rpm, and horsepower.
 - w. Condenser fan motor voltage at each connection.
 - x. Condenser fan motor amperage for each phase.
- L. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.
- 3.14 INSPECTIONS
 - A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
 - 2. Randomly check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.

- c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
- d. Measure sound levels at two locations.
- e. Measure space pressure of at least 10 percent of locations.
- f. Verify that balancing devices are marked with final balance position.
- g. Note deviations to the Contract Documents in the Final Report.

B. Final Inspection:

- 1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
- 2. TAB firm test and balance engineer shall conduct the inspection in the presence of Architect.
- 3. Architect shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- 6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.
- 7. Request a second final inspection. If the second final inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.

3.15 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 230700 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Insulation Materials:
 - a. Cellular glass.
 - b. Flexible elastomeric.
 - c. Mineral fiber.
- 2. Adhesives.
- 3. Mastics.
- 4. Lagging adhesives.
- 5. Sealants.
- 6. Field-applied jackets.
- 7. Tapes.
- 8. Securements.
- 9. Corner angles.
- B. Related Sections:
 - 1. Division 21 Section "Fire-Suppression Systems Insulation."
 - 2. Division 22 Section "Plumbing Insulation."

1.3 ACCEPTABLE MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aeroflex
 - 2. Armacell
 - 3. Certain Teed Corp.
 - 4. Johns Manville
 - 5. Knauf Insulation
 - 6. Owens Corning
 - 7. Pittsburg Corning Corp.
- B. Listing of manufacturers name does not guarantee approval. All equipment must meet or exceed quality and capacities of specified equipment. Final approval will be based on equipment submittals. Any manufacturer not listed but wishing to bid this project shall submit a written request 14 days prior to bid date, prior approval is required for all manufacturers not listed.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- B. Qualification Data: For qualified Installer.
- C. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Block Insulation: ASTM C 552, Type I.
 - 2. Special-Shaped Insulation: ASTM C 552, Type III.
 - 3. Board Insulation: ASTM C 552, Type IV.
 - 4. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 5. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 6. Factories fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory applied FSK jacket. For equipment applications, provide insulation with factory applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass and Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 - 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 4. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 2. Service Temperature Range: 0 to 180 deg F.
 - 3. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 4. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 2. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 4. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 200 deg F.
 - 3. Solids Content: 63 percent by volume and 73 percent by weight.
 - 4. Color: White.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

- 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
- 3. Service Temperature Range: Minus 50 to plus 180 deg F.
- 4. Color: White.

2.5 SEALANTS

- A. Joint Sealants: Cellular-Glass Products.
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.
 - 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
 - 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.
 - 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. Metal Jacket:
 - 1. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Finish and thickness are indicated in field-applied jacket schedules.
 - b. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - c. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

- D. Self-Adhesive Outdoor Jacket: 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
- 2.7 TAPES
 - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
 - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
 - C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
 - D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.
 - E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 4 mils.
 - 3. Adhesive Thickness: 1.5 mils.
 - 4. Elongation at Break: 145 percent.
 - 5. Tensile Strength: 55 lbf/inch in width.
 - F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 6 mils.
 - 3. Adhesive Thickness: 1.5 mils.
 - 4. Elongation at Break: 145 percent.
 - 5. Tensile Strength: 55 lbf/inch in width.
- 2.8 SECUREMENTS
 - A. Bands:
 - 1. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

- 2. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - b. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive-backed base with a peel-off protective cover.
 - 6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
 - 7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, stainless steel.
- 2.9 CORNER ANGLES
 - A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" irestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.

- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.

- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.
- E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 75 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped

pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 75 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- E. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.10 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.

- B. Flexible Elastomeric Thermal Insulation: Coat exposed outdoor flexible elastomeric insulation with two coats of manufacturer's recommended protective white coating; or cover with aluminum jacketing all exposed outdoor flexible elastomeric insulation, in lieu of paint.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.
- 3.11 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
 - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- 3.12 DUCT INSULATION SCHEDULE, GENERAL
 - A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply, return, and outdoor air.
 - 2. Indoor, exposed outdoor air.
 - 3. Indoor, concealed and exposed kitchen hood make-up air.
 - B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Exhaust ductwork, including Kitchen Exhaust
 - 4. Factory-insulated flexible ducts.
 - 5. Factory-insulated plenums and casings.
 - 6. Flexible connectors.
 - 7. Vibration-control devices.
 - 8. Factory-insulated access panels and doors.
- 3.13 INDOOR DUCT AND PLENUM INSULATION SCHEDULE
 - A. Supply-air Ducts, concealed (installed above ceilings):
 - 1. Mineral-Fiber Blanket: 2 inches thick and installed R-5.0.
 - B. Return Air Ducts, concealed (installed above ceilings):
 - 1. Mineral-Fiber Blanket: 2 inches thick and installed R-5.0.
 - C. Exposed Supply and Return Ductwork in Air Conditioned, Occupied Spaces, and Exhaust Air Ductwork:

- 1. Mineral-Fiber Blanket: 2 inches thick and installed R-5.0.
- D. Exposed Supply and Return Ductwork exposed in Air-Conditioned Utility Spaces (Conditioned Mechanical Rooms or Mechanical Rooms used as Return Air Plenums) and Exposed in Non-Air-Conditioned Spaces (Boiler Rooms, et. Al):
 - 1. Mineral-Fiber Board Insulation: 2 inches thick and installed R-5.0.
- E. Outside-Air Ducts:
 - 1. Mineral-Fiber Blanket: 2 inches thick and installed R-5.0.
- F. Kitchen Hood Make-Up Air Ducts:
 - 1. Mineral-Fiber Blanket: 2 inches thick and installed R-5.0.
- 3.14 PIPING INSULATION SCHEDULE, GENERAL
 - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
 - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
- 3.15 INDOOR PIPING INSULATION SCHEDULE
 - A. Condensate and Equipment Drain Water:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 3/4 inch thick.
 - B. Refrigerant Suction and Hot-Gas Piping:
 - 1. Insulation shall be installed per the manufacturer's recommendations.
- 3.16 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE
 - A. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be as recommended by the manufacturer.
- 3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
 - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
 - B. Piping, Exposed:
 - Aluminum, Smooth: 0.016 inch thick.

END OF SECTION 230700

SECTION 230900 - BUILDING AUTOMATION SYSTEM PART 1 - GENERAL

1.1 WORK INCLUDED:

- A. Direct Digital Controls (DDC) BACnet compliant
- B. Programming and Graphics
- C. Controllers (Global, Standalone, Application Specific)
- D. Communications
- E. Sensors
- F. Valves, Dampers and actuators
- G. Electrical appurtenances and wiring systems
- H. Sequence of Operation

1.2 RELATED WORK:

- A. Section 15010 Mechanical General Requirements
- B. Division 16 Electrical

1.3 SHOP DRAWINGS:

- A. System Architecture (BACnet LAN scheme)
- B. Wiring diagrams
- C. Valves and actuators
- D. Dampers and actuators
- E. System schematics for all mechanical systems
- F. Material lists with part numbers and quantities, as appropriate
- G. Technical/Product data sheets for each piece of equipment
- H. Sequence of Operation for each system
- I. As-built drawings of installed system

1.4 SUBMITTALS:

- A. Submit Shop Drawings of the complete Building Automation System (DDC System) for review and approval.
- B. Drawings shall be submitted on standard sheet size format (8-1/2" x 11", 11" x 17", or 24" x 36").
- C. Drawings shall be bound within a standard 3-ring binder, cover, or other suitable permanent binder. For projects in which the controls submittals will be less than one-half inch thick, the submittal documents may be securely stapled in the upper left-hand corner provided the cover sheet and back sheet are printed on card stock (heavy bond paper).
- D. Submit *five* (5) copies of submittal drawings for review by the Owner.
- E. At completion, furnish as-built drawings in bound form and on CD.
- F. Submit documentation for all DDC programming in graphical form (AutoCAD or Visio format, or equal) as a part of the as-built documentation.
- G. Submit manufacturer's operating instruction manual for the DDC control system for use in owner training.
- H. Submit Certificate of Training upon completion of all scheduled training of the owner's operating personnel.

- 1.5 CODES AND REFERENCE STANDARDS: The latest edition of the following standards and codes in effect and amended as of the date of the supplier's proposal, and any subsections thereof as applicable, shall govern the design and selection of equipment and material supplied.
 - A. NFPA 70 National Electrical Code (NEC)
 - B. ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers (Handbooks)
 - C. ANSI/ASHRAE Standard 135 (1995) BACnet: A Data Communication Protocol for Building Automation and Control Networks
 - D. UL 916 Standard for Energy Management Equipment
 - E. FCC Part 15, Subpart J
 - F. City, County, State and Federal regulations and codes in effect as of the date of the Contract
- 1.6 PERMITS: Except as otherwise indicated, the system supplier shall secure and pay for all permits, inspections, and certifications required for his work and arrange for all necessary approvals by the governing authorities.

1.07 QUALITY ASSURANCE:

- A. Responsibility: The supplier of the HVAC digital logic control system shall be responsible for inspection and Quality Assurance (QA) for all materials and workmanship furnished by him.
- B. Component Testing: Maximum reliability shall be achieved through extensive use of high quality, pre-tested components. The manufacturer prior to shipment shall individually test each and every controller, sensor, and all other DDC components.
- C. Tools, Testing and Calibration Equipment: The control system supplier shall provide all tools, testing, and calibration equipment necessary to ensure reliability and accuracy of the control system.
- D. Authorized Representative: The systems control contractor shall have been in business a minimum of three years and be the authorized representative for the manufacturer of the BACnet components.
- 1.8 WARRANTY: The DDC control system installed under this Specification shall be free from defects in material and workmanship under normal use and service for a period of twelve (12) months after final acceptance by the Owner. If within the twelve (12) month warranty period, any equipment, software, or labor is found to be defective in workmanship or materials, it shall be replaced free of charge by the Controls system installer. Warranty service shall be available to the job site during normal working hours.
- 1.9 PREVENTATIVE MAINTENANCE: The DDC control system installed as part of this project shall include a preventative maintenance schedule including two four-hour inspections per building twice within the first year of operation. The college desires one service company to have responsibility for maintaining the entire campus-wide automation system. Therefore, the successful bidder shall be responsible for conducting similar inspections at all campus buildings with DDC controls.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. The following companies are pre-approved: Honeywell, Schneider, Distech, Trane, Tridium.

- B. Installation of the system shall be by qualified employees of the temperature control system manufacturer or its exclusive authorized representative and qualified subcontractor. Indirect temperature control work by non-qualified installing contractors performing work without direct supervision from the authorized representative will not be accepted.
- C. The installing contractor shall provide all tools, testing and calibration equipment necessary to ensure reliability and accuracy of the control system.

2.2 SYSTEM REQUIREMENTS:

- A. Furnish a totally native BACnet-based system for distributed logic control in accordance with this specification. The system operator's terminal, all global controllers, and all input/output devices shall communicate using the protocols and local area network (LAN) standards as defined by ANSI/ASHRAE Standard 135 1995 (BACnet). No gateways shall be used.
- B. The system shall be a complete system of automatic temperature controls of the Direct Digital Control (DDC) type with electric and electronic accessories and components as indicated and as required.
- C. All control items, except thermostats, sensors and transmitters located in rooms shall be properly identified with engraved plastic nameplates permanently attached. Nameplates shall have white letters on a black background.
- D. Room thermostat, sensor and transmitter locations shall be coordinated to align vertically or horizontally with adjacent light switches or other control devices. Room thermostats and sensors shall be mounted with the bottom 5'-0" above the floor.
- E. Owner's Representative shall furnish disk file copies of the building floor plan(s) in AutoCAD (or other compatible drafting package format) for use by the DDC system Contractor in creating custom system graphics for displays.

2.3 SENSORS, TRANSMITTERS AND THERMOSTATS:

- A. Temperature Sensors: Thermistor type with an accuracy of plus or minus 0.40-degree F over the entire control range. Sensors for pipe installations shall be immersion type, brass well, and thermistor with integral lead wire. Sensors for duct application shall be insertion probe type, stainless steel probe, integral handibox, and thermistor with integral lead wire. Space temperature sensors shall be compatible with the unit controller and shall be provided in a decorative metal or plastic enclosure. Space temperature sensors shall be provided with setpoint adjustment (lever or slide type), and override pushbutton, and connection port for field service tool. Outdoor temperature sensors shall be mounted inside a protective weather and sun shield.
- B. Space Temperature Sensor: Wall mounted room controller with integral digital display and user function keys to control room temperature setpoints, select fan speeds (where appropriate), view room and outside air temperatures, view room setpoints or discharge temperature, or initiate after-hours operation of the associated terminal unit or system. The controller shall also be capable of functioning as a field service tool to allow maintenance personnel to observe and adjust all control parameters resident in the terminal unit controller. These control parameters shall also be adjustable from the global controller. Sensor shall be standard two-wire connection and have a thermistor, housed in a decorative plastic enclosure.
- C. Humidity Sensors: Thin-film capacitive type sensor with on-board nonvolatile memory, accuracy to plus or minus two percent (2%) at 0 to 90% RH, 12 30 VDC input voltage, analog output (0 10 VDC or 4 20mA output). Operating range shall be 0 to 100% RH and 32-to-140-degree F. Duct mounted type sensors shall have a stainless-steel insertion element, sealed to prohibit corrosion. Sensors shall be selected for wall, duct or outdoor type installation as appropriate.

- D. Current Switches (Type 1): For proving fan or pump operational status, provide split-core type current status switches with adjustable setpoint and solid-state internal circuitry. Current switch shall have induced power, trip point set adjustment to plus or minus 1% over a range of 1 to 135 amps, trip and power LED, and field adjustable to indicate both On-Off conditions and loss of load (broken belt, etc.). Units shall have a five-year manufacturer's warranty. Current switches shall be Hawkeye Series H-908 by Veris Industries or approved equal.
- E. Low Temperature Sensors: For sensing low temperatures in air handling units, provide SPST type switch, 35-to-45-degree F range, manual reset, vapor charged twenty-foot-long sensing element, and 120-volt electrical power connection.

2.6 MISCELLANEOUS MATERIALS:

- A. Panels: All enclosures for DDC controllers and devices shall be fabricated in accordance with UL Standards from code gauge steel. Enclosures shall be provided with a continuous hinge on the door and a flush latching mechanism. Enclosures shall be shop painted with standard grade enamel coating. Back panels shall be furnished when required to facilitate installation of boards or accessories. All enclosures installed outdoors shall be constructed to NEMA 3R standards. All controllers shall be installed within an approved enclosure unless the controller will be installed within the control cabinet section of the equipment that it is intended to control. Enclosures shall facilitate the mounting of gauges, switches, pilot lights, and the like, on the face panel when required. Control devices that are mounted on the face of the panel shall be identified with engraved nameplates.
- B. Power Transformers: Step-down power transformers shall be provided for all DDC controllers and associated accessory devices as required. Transformers shall be sized and selected to accommodate all connected accessory items. Transformers shall be UL Listed Class 2 type with 120 VAC primary, 24 VAC secondary.
- C. Relays: Miscellaneous control relays shall be provided as required to energize or control equipment and devices within the control system. Relays shall be located as close as practical to the controlled device (motor, motor starter, etc.). Where approved by NEC, relays may be installed within starters and equipment control panels where space is available. Relays installed outside of the controlled device shall be provided with a NEMA enclosure suitable for the location where installed.
- D. Wiring: All wiring shall be installed in a neat and professional manner. Control wiring shall not be installed in power circuit conduits or raceways unless specifically approved for that purpose. All wiring shall be plenum rated cable where conceled and in EMT conduits when exposed.
 - 1. Provide all interlock and control wiring. Provide wiring as required by functions as specified and as recommended by equipment and device manufacturers to achieve the specified control functions.
 - 2. Low voltage conductors shall be stranded bare or tinned copper with premium grade polymer alloy insulation. For shielded cable, furnish multi-conductor of overall polyester supported aluminum foil with stranded tinned copper drain wire to facilitate grounding. Coaxial shield shall be copper braided type. Provide shielded cable where recommended by the equipment or device manufacturer, grounded in strict accordance with the manufacture's recommendations.
 - 3. Low voltage wiring shall be UL Listed type for the intended application. Non-plenum type cable shall be UL Type CM and /or CMR. Plenum type cable shall be UL type CMP and /or CL3P for approved plenum installations.

Direct Digital Control System

2.7 GENERAL: The Direct Digital Control (DDC) System shall consist of native BACnet type global controller(s) and standalone or application specific unitary controller(s) configured as a distributed communications network composed of one or more levels of BACnet compliant local area networks (LAN). No gateways shall be used except when required to interface with specific

equipment furnished by another manufacturer (e.g.: chiller controllers, packaged equipment controllers, etc.). The intent of the distributed control strategy is to install the controllers in close proximity to the equipment being controlled, and to distribute the processing to each standalone DDC panel. In the event of a communications failure of the BACnet LAN, the controllers shall be capable of operating in standalone mode. All devices (global controllers, standalone controllers, programmable controllers, etc.) shall be UL Listed, FCC approved, and BACnet compliant.

2.08 WORK INCLUDED:

- A. Furnish a totally native BACnet-based system based on distributed logic control in accordance with this specification section. The operator's terminal, all global controllers, logic controllers, and all input/output devices shall communicate using the protocols and local area network (LAN) standards as defined by ANSI/ASHRAE Standard 135-1995, BACnet. All DDC controllers, including unitary controllers, shall be native BACnet devices. In general, no gateways shall be used except when required to interface with specific equipment furnished by another manufacturer. Scope of work will include, but not be limited to, the following:
 - 1. Provide all necessary BACnet compliant hardware and software to meet the system's functional specifications. Provide Protocol Implementation Conformance Statement (PICS) for every controller in the system, including unitary controllers. All direct digital logic hardware is to comply with BACnet.
 - 2. Prepare individual hardware layouts, interconnection drawings, and software configuration from project design data.
 - 3. Implement the detailed design for all system-standard analog and binary objects, distributed control and system databases, graphic displays, logs, and management reports based on control descriptions, logic drawings, configuration data, and bid documents.
 - 4. Design, provide, and install all equipment enclosures, panels, data communication network cables needed, and all associated hardware.
 - 5. Provide and install all interconnecting cables between supplied enclosures, logic controllers, and input/output devices.
 - 6. Provide and install all interconnecting cables between all operator's terminals and peripheral devices (such as printers, etc.) supplied under this contract.
 - 7. Provide complete manufacturer's product data for all items that are supplied. Include vendor name of every item supplied.
 - 8. Provide qualified supervisory personnel and technicians at the job site to assist in all phases of system installation, startup, and commissioning.
 - 9. Provide for operator training as described in this Section.
 - 10. Provide "as-built" documentation, operator's terminal software, diagrams, and all other associated project operational documentation (such as technical manuals) on approved media, the sum total of which accurately represents the final system.
 - 11. Provide new dampers, valves, actuators, sensors, controllers, and the like. No used components shall be provided as any part or piece of the installed system.

2.09 SYSTEM DESCRIPTION:

A. General Requirements

 A distributed logic control system complete with Direct Digital Control (DDC) and Direct Analog Control (DAC) software shall be provided. System shall be totally based on ANSI/ASHRAE Standard 135 – 1995, BACnet. This system is to control all mechanical equipment, including all unitary equipment such as packaged air conditioning units, and all

- air handling units, boilers, chillers, and any other listed equipment on this project using native BACnet-compliant components.
- 2. The entire processing system shall be in complete compliance with the BACnet standard. The system shall use BACnet protocols and LAN types throughout and exclusively. Non-BACnet compliant or proprietary equipment or systems (including gateways, except as specified previously) shall *not* be acceptable and are specifically prohibited.
- 3. All logic controllers for terminal units, air handlers, central mechanical equipment, and Microsoft Windows-based operator's terminal(s) shall communicate and share data, utilizing only BACnet communication protocols.
- 4. All logic controllers shall be fully programmable. Programmable controllers for every terminal unit, air handler, all central plant equipment, and any other piece of controlled equipment shall be provided. Programming tools shall be provided as part of the operator workstation for every controller supplied for the project.
- The Controls Contractor shall assume complete responsibility for the entire controls system as a single source. He shall certify that he has factory-trained personnel on staff under his direct employ on a daily basis. These employees shall be qualified to engineer, program, debug, and service all portions of the BACnet based logic control system. This shall include operator's terminal, global controllers, routers, programmable controllers, terminal unit controllers, sensors and all other components of the system.

B. Basic System Features

- 1. Zone-by-zone direct digital logic control of space temperature, scheduling, optimum start, equipment alarm reporting, and override timers for after-hours usage. A zone is the area served by one HVAC logic controller unit, such as a heat pump, VAV box, or multi-zone unit.
- 2. Operator's terminal software shall be Microsoft Windows 7 based. The Building Automation System application program shall be written to communicate specifically utilizing BACnet protocols. Software shall be multi-tasking, capable of executing and displaying multiple instances in individual windows while running concurrently with other Windows programs such as word processors or database programs. Software shall support Windows Dynamic Data Exchange (DDE) interfaces. Software shall strictly follow Microsoft Windows API guidelines. Systems using proprietary software or operating systems other than that described above are strictly prohibited. Operation of the terminal software shall be simple and intuitive.
- 3. Operator's terminal software shall contain an easy-to-operate system allowing configuration of system-wide BACnet controllers, including management and display of the controller programming. This system shall provide the capability to configure controller binary and analog inputs and outputs.
- 4. Operator's terminal operating system shall be capable of utilizing third-party Windows-based programs for such things as spreadsheet analysis, graphing, charting, custom report generation, and graphics design packages. Graphics generation shall be done using standard Windows packages. No proprietary graphics generation software shall be required.
- 5. When specified, at least one operator's terminal shall be equipped to act as a system server. This system server shall store custom copies of loadable software for all field components and shall be capable of automatic or manual reloading of such software into the field components as required. The system server shall also gather and archive system operating data, such as trendlogs, energy logs, and other historical operating data.
- 6. Complete energy management firmware, including self-adjusting optimum start, demand limiting, global control strategies and logging routines for use with total control systems shall be supplied. All energy management firmware shall be resident in field hardware and

- shall not be dependent on the operator's terminal for operation. Operator's terminal software is to be used for access to field-based energy management control firmware only.
- 7. Priority password security systems shall prevent unauthorized use. Each user shall have an individual password. The user shall only be given access to the system functions required for individual job performance.
- 8. Equipment monitoring and alarm functions, including information for diagnosing equipment problems shall be included with the system.
- The complete system, including, but not limited to terminal unit controllers, global controllers and operator's terminals shall auto-restart, without operator intervention, on resumption of power after a power failure. Database stored in global controller memory shall be battery-backed up for a minimum of one (1) year. Logic controllers for all air handlers and all unitary equipment shall utilize EEPROM for all variable data storage. Batteries on unitary controllers shall not be allowed.
- 10. System design shall be modular and have proven reliability.
- 11. All software and /or firmware interface equipment for connection to remote monitoring station from field hardware or the operator's terminal shall be provided.
- 12. System shall be capable of equipment runtime totalization of fans, heaters, boilers, pumps and the like and capable of alarm generation and alarm dial-out to remote sites.
- 13. Room sensors shall be provided with digital readout that allows the user to view room temperature, view outside air temperature, adjust the room setpoint within preset limits and set desired override time. In conjunction with unitary logic controller, the user shall also be able to start and stop unit from the digital sensor.
- 14. Communication wiring from field controllers shall NOT be run in star patterns.
- 15. All controllers shall communicate using protocols and LAN types contained in the ANSI/ASHRAE Standard 135 1995, BACnet.
- 16. All DDC hardware and software shall be designed and manufactured by U.S. corporations. All hardware shall be Listed Underwriters Laboratories (UL) for Open Energy management Equipment (PAZX) under the UL Standard for Safety (UL 916) in both the U.S. and Canada, with integral labels showing the rating.
- 17. All hardware shall be in compliance with FCC Part 15, Subpart J, Class A.

2.10 OPERATOR'S TERMINAL: (Required for all non-Alerton systems)

A. Operating System

- 1. The GUI shall run on Microsoft Windows 7 Professional.
 - a. The GUI shall employ browser-like functionality for ease of navigation. It shall include a tree view (similar to Windows Explorer) for quick viewing of, and access to, the hierarchical structure of the database. In addition, menu-pull downs, and toolbars shall employ buttons, commands and navigation to permit the operator to perform tasks with a minimum knowledge of the HVAC Control System and basic computing skills. These shall include, but are not limited to, forward/backward buttons, home button, and a context sensitive locator line (similar to a URL line), that displays the location and the selected object identification.
 - b. Real-Time Displays. The GUI, shall at a minimum, support the following graphical features and functions:
 - i. Graphic screens shall be developed using any drawing package capable of generating a GIF, BMP, or JPG file format. Use of proprietary graphic file formats shall not be acceptable. In addition to, or in lieu of a graphic background, the GUI shall support the use of scanned pictures.

- ii. Graphic screens shall have the capability to contain objects for text, real-time values, animation, color spectrum objects, logs, graphs, HTML or XML document links, schedule objects, hyperlinks to other URL's, and links to other graphic screens.
- iii. Graphics shall support layering and each graphic object shall be configurable for assignment to one a layer. A minimum of six layers shall be supported.
- iv. Modifying common application objects, such as schedules, calendars, and set points shall be accomplished in a graphical manner.
- v. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
- vi. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
- vii. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
- viii. Adjustments to analog objects, such as set points, shall be done by right-clicking the selected object and using a graphical slider to adjust the value. No entry of text shall be required.
- c. System Configuration. At a minimum, the GUI shall permit the operator to perform the following tasks, with proper password access:
 - i. Create, delete or modify control strategies.
 - ii. Add/delete objects to the system.
 - iii. Tune control loops through the adjustment of control loop parameters.
 - iv. Enable or disable control strategies.
 - v. Generate hard copy records or control strategies on a printer.
 - vi. Select points to be alarmable and define the alarm state.
 - vii. Select points to be trended over a period of time and initiate the recording of values automatically.
- d. On-Line Help. Provide a context sensitive, on-line help system to assist the operator in operation and editing of the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext. All system documentation and help files shall be in HTML format.
- e. Security. Each operator shall be required to log on to that system with a username and password in order to view, edit, add, or delete data. System security shall be selectable for each operator. The system administrator shall have the ability to set passwords and security levels for all other operators. Each operator password shall be able to restrict the operators' access for viewing and/or changing each system application, full screen editor, and object. Each operator shall automatically be logged off of the system if no keyboard or mouse activity is detected. This auto log-off time shall be set per operator password. All system security data shall be stored in an encrypted format.
- f. System Diagnostics. The system shall automatically monitor the operation of all workstations, printers, modems, network connections, building management panels, and controllers. The failure of any device shall be annunciated to the operator.
- g. Alarm Console
 - i. The system will be provided with a dedicated alarm window or console. This window will notify the operator of an alarm condition and allow the operator to view details of the alarm and acknowledge the alarm. The use of the Alarm Console can be enabled or disabled by the system administrator.
 - ii. When the Alarm Console is enabled, a separate alarm notification window will supercede all other windows on the desktop and shall not be capable of being

minimized or closed by the operator. This window will notify the operator of new alarms and un-acknowledged alarms. Alarm notification windows or banners that can be minimized or closed by the operator shall not be acceptable.

2. WEB BROWSER CLIENTS

- a. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet ExplorerTM. Systems requiring additional software (to enable a standard Web browser) to be resident on the client machine, or manufacture-specific browsers shall not be acceptable.
- b. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the DDC system, shall not be acceptable.
- c. The Web browser shall provide the same view of the system, in terms of graphics, schedules, calendars, logs, etc., and provide the same interface methodology as is provided by the Graphical User Interface. Systems that require different views or that require different means of interacting with objects such as schedules, or logs, shall not be permitted.
- d. The Web browser client shall support at a minimum, the following functions:
 - User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.
 - ii. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the GUI shall be supported by the Web browser interface.
 - iii. HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.
 - iv. Storage of the graphical screens shall be in the Network Area Controller (NAC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.
 - v. Real-time values displayed on a Web page shall update automatically without requiring a manual "refresh" of the Web page.
 - vi. User's shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
 - vii. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 - 1. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 - 2. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 - viii. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
 - ix. View logs and charts
 - x. View and acknowledge alarms
 - xi. Setup and execute SQL queries on log and archive information
 - xii. The system shall provide the capability to specify a user's (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to just their defined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.

xiii. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

C. Display of Scheduling Object Information

- 1. Operator's terminal display of weekly schedules shall show all information in convenient 7-day (weekly) format for each schedule. This includes all On/Off times (accurate to the minute) for each day's events.
- 2. BACnet exception schedules (non-normal schedules, such as holidays or special events) shall display all dates that are an exception to the normal weekly schedules. These specialty schedules shall be displayed at the operator's terminal in a format similar to the weekly schedules, with input requirements similar to weekly schedules. Holiday and event schedules shall be entered as either single day entries, date-to-date entries (covering a range of days), or by weekday (for example, a specific day of a given week each month). The operator shall be able to scroll through the months for each year as a minimum.
- 3. At the Operator's Terminal, the system user shall be capable of changing all information for a given weekly or specialty schedule if logged on with the appropriate security access.

D. Alarm Indication

- 1. Operator's Terminal shall provide audible, visual and printed means of alarm indication. The alarm dialog box shall always become the top dialog box regardless of the application(s) being run at the time (such as a word processor). Printout of alarms shall be sent to the assigned terminal and port.
- 2. Alarm messages shall be logged. Alarm log shall be archived to the hard disk of the system terminal. Each entry shall include a description of the event which generated the alarm, time and date of alarm occurrence, time and date of status return to normal, and time and date of alarm acknowledgment.
- 3. Alarm messages shall be provided in user definable text (English or other user defined language) and shall be accessible either at the Operator's Terminal or via remote (modem) communication. When specified, designated alarms shall be available for dial out to pager alarms for 'on call' personnel.

E. Trendlog Information

- 1. DDC system shall be capable of periodically monitoring the values or status of selected feedback or control data from the system global controller(s) or field controllers and archiving this information on the operator's terminal. Archived files shall be appended with new sample data, allowing samples to be accumulated over a user defined period. Systems that overwrite previously archived data samples shall not be allowed, unless limited file size is specified. Samples in a trendlog shall be available for viewing at the operator's terminal. Displays of trendlog data shall be in spreadsheet format. Operator shall be capable of scrolling through all trendlog data. System shall automatically open archive files as needed to display archived data when the operator scrolls through the data vertically. All trendlog information displays shall be shown in standard engineering units.
- 2. Software shall be included that is capable of graphing the trend logged object data. Software shall be capable of creating two-axis (x, y) graphs that display up to six object types at the same time in different colors. Graphs shall show object type values relative to time.

- 3. Operator shall be able to change trendlog setup information. This shall include the data points and status information being trendlogged as well as the interval at which the information is to be logged. All trendlog functions shall be password protected. The operator shall be capable of viewing or setting up a trendlog for any prompted or read-only item.
- 4. The system shall provide a means for the operator to directly export data to a commadelimited file format for use in third-party software spreadsheets or other database programs. The system operation shall not be affected in any way by this data exchange.

F. Energy Log Information

- 1. DDC system shall periodically gather energy log data stored in field terminal controllers and archive this information on the operator terminal's hard disk. Archive data shall be appended with the new data and allow data to be accumulated over several years. Systems that overwrite archived data shall not be allowed unless limited file size is specified. System shall automatically open archive files as needed to display archived data when the operator scrolls through the data. All energy log information shall be displayed in standard engineering units.
- 2. System software shall be capable of graphing the Energy Log data. Software shall be capable of creating graphs in two-axis (x, y) format that shows recorded data relative to time. All data shall be stored in comma-delimited file format for direct use by third party software spreadsheets or other database programs. System operation shall not be affected by on-line access to the energy information.
- 3. Operator shall be able to modify the energy log setup information. This shall include which meters are to be logged, meter pulse value, and what types of energy units are being logged. All energy meters monitored by the system shall be capable of being logged. All energy logging operations shall be password protected.
- 4. Provide capability for the operator to export to a comma-delimited file format all energy-logged data for use by third party software spreadsheets or other database programs. System operation shall not be affected by on-line access to the energy information.

G. Configuration/Setup

1. Provide means for the operator to display and change the system configuration. This shall include, but not be limited to: system time, day of the week, date of daylight savings time set forward/back, printer termination, port addresses, modem port and speed, and the like. Items shall be modified utilizing easily understood terminology by means of simple mouse/cursor key movements.

H. Programming Tools

- 1. Operator's Terminal shall include programming tools for all controllers supplied. If a new software package is proposed it is the contractor's responsibility to load all programming tools/ engineering software on all of the owner's operator terminals and laptops, as well as provide all connectors for connection to field devices with portable terminals. All controllers shall be programmed using graphical tools that allow the user to connect function blocks on screen that provide sequencing of all control logic. Function blocks shall be represented by graphical displays that are easily identified and distinct from different types of blocks. Graphical programming that uses simple rectangles and squares is not acceptable.
- 2. User shall be able to pick graphical function block from the menu and place on screen. Programming tools shall place lines connecting appropriate function blocks together

- automatically. Provide zoom in and zoom out capabilities. Function blocks shall be downloaded to controller without any reentry of data.
- 3. Programming tools shall include a teat mode. Test mode shall show user the real-time data on top of graphical display of selected function blocks. Data shall be updated real-time with no interaction by the user. Function blocks shall be animated to show status of data inputs and outputs. Animation shall show change of status on logic devices and countdown of timer devices in graphical format.

2.11 GLOBAL BUILDING CONTROLLERS (GBCs)

- A. The controls contractor shall supply one or more global controller as part of this contract. Number of global controllers required is dependent on the type and quantity of DDC devices.
- B. The Global Building Controller shall provide the interface between the LAN and the field control devices, and provide global supervisory control functions over the control devices connected to the GBC. It shall be capable of executing application control programs to provide:
 - a. Calendar functions
 - b. Scheduling
 - c. Trending
 - d. Alarm monitoring and routing
 - e. Time synchronization
 - f. Integration of LonWorks controller data and BACnet controller data
 - g. The GBC must provide the following hardware features as a minimum:
 - 1. One Ethernet Port 10 Mbps
 - 2. One RS-232 port
 - 3. One BACnet MS/TP Port
 - 4. Battery Backup
 - 5. Flash memory for long term data backup (If battery backup or flash memory is not supplied, the controller must contain a hard disk with at least 1 gigabyte storage capacity)
 - 6. The GBC must be capable of operation over a temperature range of 0 to 55°C
 - 7. The GBC must be capable of withstanding storage temperatures of between 0 and 70° C.
 - 8. The GBC must be capable of operation over a humidity range of 5 to 95% RH, non-condensing.
 - 9. The GBC shall provide multiple user access to the system and support for ODBC or SQL. A database resident on the GBC shall be an ODBC-compliant database or must provide an ODBC data access mechanism to read and write data stored within it.
 - 10. Event Alarm Notification and actions
 - 11. The GBC shall provide alarm recognition, storage; routing, management, and analysis to supplement distributed capabilities of equipment or application specific controllers.
 - 12. The GBC shall be able to route any alarm condition to any defined user location whether connected to a local network or remote via dial-up telephone connection, or wide-area network.
 - 13. Alarm generation shall be selectable for annunciation type and acknowledgement requirements.
 - h. Provide for the creation of a minimum of eight alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc.
 - i. Provide timed (schedule) routing of alarms by class, object, group, or node.

- j. Provide alarm generation from binary object "runtime" and /or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control.
- k. Control equipment and network failures shall be treated as alarms and annunciated.
- 1. Alarms shall be annunciated in any of the following manners as defined by the user:
- m. Screen message text
- n. Email of the complete alarm message to multiple recipients. Provide the ability to route and email alarms based on:
 - i. Day of week
 - ii. Time of day
 - iii. Recipient
- o. Pagers via paging services that initiate a page on receipt of email message
- p. Graphic with flashing alarm object(s)
- q. Printed message, routed directly to a dedicated alarm printer
- r. Audio messages
- s. The following shall be recorded by the NAC for each alarm (at a minimum):
 - i. Time and date
 - ii. Location (building, floor, zone, office number, etc.)
 - iii. Equipment (air handler #, accessway, etc.)
 - iv. Acknowledge time, date, and user who issued acknowledgement.
 - v. Number of occurrences since last acknowledgement.
- t. Alarm actions may be initiated by user defined programmable objects created for that purpose.
- u. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.
- v. A log of all alarms shall be maintained by the GBC and/or a server (if configured in the system) and shall be available for review by the user.
- w. Provide a "query" feature to allow review of specific alarms by user defined parameters.
- x. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.
- y. An Error Log to record invalid property changes or commands shall be provided and available for review by the user.

C. Data Collection and Storage

- a. The GBC shall have the ability to collect data for any property of any object and store this data for future use.
- b. The data collection shall be performed by log objects, resident in the GBC that shall have, at a minimum, the following configurable properties:
- c. Designating the log as interval or deviation.
- d. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
- e. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
- f. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
- g. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.
- h. All log data shall be stored in a relational database in the NAC and the data shall be accessed from a server (if the system is so configured) or a standard Web Browser.
- i. All log data, when accessed from a server, shall be capable of being manipulated using standard SQL statements.

- j. All log data shall be available to the user in the following data formats:
- k. HTML
- 1. XML
- m. Plain Text
- n. Comma or tab separated values
- o. Systems that do not provide log data in HTML and XML formats at a minimum shall not be acceptable.
- p. The GBC shall have the ability to archive it's log data either locally (to itself), or remotely to a server or other GBC on the network. Provide the ability to configure the following archiving properties, at a minimum:
- q. Archive on time of day
- r. Archive on user-defined number of data stores in the log (buffer size)
- s. Archive when log has reached it's user-defined capacity of data stores
- t. Provide ability to clear logs once archived

D. AUDIT LOG

- a. Provide and maintain an Audit Log that tracks all activities performed on the NAC. Provide the ability to specify a buffer size for the log and the ability to archive log based on time or when the log has reached it's user-defined buffer size. Provide the ability to archive the log locally (to the NAC), to another NAC on the network, or to a server. For each log entry, provide the following data:
- b. Time and date
- c. User ID
- d. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

E. DATABASE BACKUP AND STORAGE

- a. The NAC shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time interval.
- b. Copies of the current database and, at the most recently saved database shall be stored in the NAC. The age of the most recently saved database is dependent on the user-defined database save interval.
- c. The NAC database shall be stored, at a minimum, in XML format to allow for user viewing and editing, if desired. Other formats are acceptable as well, as long as XML format is supported.

2.12 ROUTER, CONVERTER, OR REPEATER

Routing functions shall be performed using only BACnet standard protocols as defined by ASHRAE Standard 135-1995. The converter interconnects a standard computer serial port with an MS/TP LAN. Repeater functions shall be handled by a device to selectively interconnect four (4) portions of MS/TP LAN as a minimum.

- 1. ROUTERS: The router function shall perform the BACnet definition functions of interconnecting two or more BACnet LANs together, forming a BACnet internetwork. The router shall have optional plug-in boards permitting the following BACnet communication methods:
 - a. The router shall have the routing functionality of interconnecting BACnet Ethernet and/or ARCNET high-speed LAN to BACnet MS/TP LAN and/or more PTP LAN.
 - b. The router shall have capability of interconnecting BACnet Ethernet high-speed LAN to BACnet ARCNET high-speed LAN.
 - c. BACnet PTP (RS-232 point-to-point) communication shall be available on the global controller by including an (optional) modem. The PTP modem option shall operate under the BACnet half-router communication protocol.

- d. BACnet messages may be routed to all LANs installed on the router at the same time with no operator intervention.
- 2. CONVERTER: A converter shall (optionally) be provided to interface an (optional) portable field service computer from its serial port (RS-232) to the BACnet MS/TP LAN (RS-485).
- 3. REPEATERS: BACnet repeaters shall provide selective interconnection to 4-segments of MS/TP LAN as a minimum. The repeater shall be an active device, containing logic capable of detecting and repeating signals from one MS/TP LAN segment to all other segments. Repeaters shall permit additional nodes to be added to the MS/TP LAN, up to a maximum of 128 nodes.

2.14 TERMINAL UNIT CONTROLLERS (Heat Pumps, AC Units, Fan Coils)

A. Provide one native BACnet programmable logic controller for each piece of unitary mechanical equipment that adequately covers all objects listed in the object list for the unit. All controllers shall interface to the global controller via MS/TP LAN using BACnet protocol. No gateways shall be used. Controllers shall include input, output and self-contained logic programs as needed for complete control of the unit.

B. BACnet Conformance

- 1. Logic controllers shall as a minimum support MS/TP BACnet LAN type. They shall communicate directly via this BACnet LAN at 9.6, 19.2, 38.4 and 76.8 Kbps as a native BACnet device. Logic controllers shall be of BACnet conformance class 3 and support all BACnet services necessary to provide the following BACnet functional groups:
 - a. Files Functional Group
 - b. Reinitialize Functional Group
 - c. Device Communications Functional Group
- 2. Refer to Section 22.2, BACnet Functional Groups, in the BACnet Standard for a complete list of the services that must be directly supported to provide each of the functional groups listed above. All proprietary services, if used in the system, shall be thoroughly documented and provided as part of the submittal data. All necessary tools shall be supplied for working with proprietary information.
- 3. Standard BACnet object types supported shall include as a minimum Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Device, File and Program Object Types. All proprietary object types, if used in the system, shall be thoroughly documented and provided as part of the submittal data. All necessary tools shall be supplied for working with proprietary information.
- C. Logic controllers shall include universal inputs with 10-bit resolution and that can accept 3K and 10K thermistors, 0-5 VDC, 4-20 mA and dry contact signals. Any input controller may be either analog or binary. Controller shall also include support and modifiable programming for interface to intelligent room sensor (Alerton Microset). Controllers shall include binary outputs on board.
- D. All program sequences shall be stored on board logic controller in EEPROM. No batteries shall be needed to retain logic program. All program sequences shall be executed by the controller ten (10) times per second and shall be capable of multiple PID loops for control of multiple devices.
- E. Programming of logic controller shall be completely modifiable in the field over installed BACnet LANs or remotely via modem interface. Operator shall program logic sequences by graphically moving function blocks on screen and tying blocks together on screen. Logic controller shall be programmed using programming tools as described in Operator Terminal section of this specification.
- F. All programming tools shall be provided as a part of the system. Provide documentation in flowchart form of all programming as part of the final system as-built documentation.

- G. Logic controller shall include software-scheduling functions on board without depending on any external device. Scheduling shall be via BACnet schedule object for seven-day-of-the-week scheduling. Controller shall include interface capability for optional plug-in hardware clock with battery back up. Provide optional hardware clock as shown on the object list included with the Contract Documents (plans and specifications).
- H. Logic controller shall include support for intelligent field sensor (Alerton Microset). Display on field sensor shall be programmable at logic controller and include an operating mode and a field service mode. All button functions and display data shall be programmable to show specific controller data in each mode based on which button is pressed on the sensor. See Sequence of Operation for specific display requirements at intelligent field sensor.

PART 3 - EXECUTION

3.1 TRAINING

- A. The Controls Contractor shall provide complete on-site training for the Owner's designated operating personnel. Training shall include all functional aspects of the control system and all modes of system operation. System modes include occupied/unoccupied, heating/cooling, economizer, startup/shutdown, energy management, and alarm event operations. Training of Owner's operating personnel shall include a minimum of eight (8) hours of system instruction, conducted during one or two site visits for a combined total of eight hours of instruction. Additional instruction time may be requested by the Owner for an additional fee if needed for training additional personnel or if more instruction is requested. Training is not intended to include in-depth instruction in system programming.
- B. Training shall be conducted during normal working hours, Monday through Friday, at the project site. When applicable, the training may be conducted at the Owner's central energy management office in addition to training on site.
- C. Contractor shall furnish one (1) copy of the system Operator's Manual to the Owner. This manual should be delivered to the Owner at the time of training. This manual is in addition to the system As-built documents which are intended to show wiring configurations and sensor locations.

END OF SECTION 230900

SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.

1.2 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressure within Buildings: More than 0.5 psig but not more than 2 psig.
- C. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig and is reduced to secondary pressure of 0.5 psig or less.
- D. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
 - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
 - 4. Corrugated stainless-steel tubing with polymer coating.
 - 5. Operating-Pressure Rating: 0.5 psig.
 - 6. End Fittings: Zinc-coated steel.
 - 7. Threaded Ends: Comply with ASME B1.20.1.
 - 8. Maximum Length: 72 inches.
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.

- 3. Hand operated with automatic shutoff when disconnected.
- 4. For indoor or outdoor applications.
- 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

- A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

2.5 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller.
- B. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Body and Diaphragm Case: Die-cast aluminum.
 - 2. Springs: Zinc-plated steel; interchangeable.
 - 3. Diaphragm Plate: Zinc-plated steel.
 - 4. Seat Disc: Nitrile rubber.
 - 5. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 6. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
 - 7. Regulator vent limiting device.
 - 8. Maximum Inlet Pressure: 2 psig.

2.6 DIELECTRIC UNIONS

- A. Minimum Operating-Pressure Rating: 150 psig.
- B. Combination fitting of copper alloy and ferrous materials.
- C. Insulating materials suitable for natural gas.

- D. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.
- 2.7 SLEEVES
 - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
 - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- 2.8 MECHANICAL SLEEVE SEALS
 - A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe and sleeve.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one nut and bolt for each sealing element.

2.9 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 and the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer
 - 3. Replace pipe having damaged PE coating with new pipe.
- E. Install fittings for changes in direction and branch connections.
- F. Exterior-Wall Pipe Penetrations: Seal penetrations using steel or cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.2 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 and the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss,

- expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."
- L. Verify final equipment locations for roughing-in.
- M. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- N. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- O. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- P. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.
- T. Do not use natural-gas piping as grounding electrode.
- 3.3 VALVE INSTALLATION
 - A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.
 - B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
 - C. Install earthquake valves aboveground outside buildings according to listing.
- 3.4 PIPING JOINT CONSTRUCTION
 - A. Ream ends of pipes and tubes and remove burrs.
 - B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.

- 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
- 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:

- 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.
- G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches minimum; rod size, 3/8 inch
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within view of each gas-fired appliance and equipment (72" max). Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 FIELD QUALITY CONTROL

- A. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.
- B. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 231123

SECTION 23 11 23

FUEL GAS PIPING

PART 1 GENERAL

1.1 SUMMARY

- A. Section Includes: Pipe and pipe fittings for the following systems:
 - 1. Natural Gas piping.
 - 2. LP Gas piping.
 - 3. Flue and Combustion Air piping for sealed combustion, direct vent water heaters.
 - 4. Unions and flanges.
 - 5. Underground pipe markers.

B. Related Sections:

- 1. Section 08 31 13 Access Doors and Frames.
- 2. Section 09 90 00 Painting and Coating.
- 3. Section 22 05 23 General-Duty Valves for Plumbing Piping.
- 4. Section 22 05 29 Hangers and Supports for Plumbing Piping and Equipment.
- 5. Section 22 07 00 Plumbing Insulation.

1.2 REFERENCES

- A. American Society of Mechanical Engineers:
 - 1. ASME Section IX Boiler and Pressure Vessel Code Welding and Brazing Qualifications.

B. ASTM International:

- 1. ASTM A53/A53M Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless.
- 2. ASTM A74 Standard Specification for Cast Iron Soil Pipe and Fittings.
- 3. ASTM B42 Standard Specification for Seamless Copper Pipe, Standard Sizes.
- 4. ASTM B75 Standard Specification for Seamless Copper Tube.
- 5. ASTM B88 Standard Specification for Seamless Copper Water Tube.
- 6. ASTM B306 Standard Specification for Copper Drainage Tube (DWV).

- 7. ASTM D1784 Rigid Chlorinated Poly (Vinyl Chloride) (CPVC) Vinyl Compounds.
- 8. ASTM D1785 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120.
- 9. ASTM D2665 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings.
- 10. ASTM F441/F441M Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80.

C. American Welding Society:

- 1. AWS A5.8 Specification for Filler Metals for Brazing and Braze Welding.
- 2. AWS D1.1 Structural Welding Code Steel.

1.3 SUBMITTALS

- A. Division 01 Submittal Procedures: Submittal procedures.
- B. Product Data: Submit data on pipe materials and fittings. Submit manufacturers catalog information.
- C. Welders' Certificate: Include welders' certification of compliance with ASME Section IX.

1.4 QUALITY ASSURANCE

A. Perform Work in accordance with ASME B31.9 code for installation of piping systems and ASME Section IX for welding materials and procedures.

1.5 QUALIFICATIONS

- A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum five years documented experience.
- B. Installer: Company specializing in performing work of this section with minimum 10 years documented experience.
- C. Design pipe hangers and supports under direct supervision of Professional Engineer experienced in design of this Work and licensed at Project location

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Division 01 Product Requirements: Requirements for transporting, handling, storing, and protecting products.
- B. Furnish temporary end caps and closures on piping and fittings. Maintain in place until installation.
- C. Protect piping from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Division 01 - Product Requirements: Environmental conditions affecting products on site.

1.8 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

1.9 COORDINATION

A. Division 01 - Administrative Requirements: Requirements for coordination.

PART 2 PRODUCTS

2.1 NATURAL GAS PIPING, BURIED WITHIN 5 FEET OF BUILDING

- A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
 - 1. Fittings: ASTM A234/A234M forged steel welding type.
 - 2. Joints: ASME B31.9, welded.
 - 3. Jacket: AWWA C105 polyethylene jacket or double layer, half-lapped 10 mil polyethylene tape.

2.2 NATURAL GAS PIPING, ABOVE GRADE

- A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
 - 1. Fittings: ASME B16.3, malleable iron, or ASTM A234/A234M forged steel welding type.
 - 2. Joints: Threaded for pipe 2 inch and smaller; welded for pipe 2-1/2 inches and larger.

2.3 LPG GAS PIPING, BURIED WITHIN 5 FEET OF BUILDING

- A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
 - 1. Fittings: ASTM A234/A234M, forged steel welding type.
 - 2. Joints: ASME B31.9, welded.
 - 3. Jacket: AWWA C105 polyethylene jacket or double layer, half-lapped 10 mil polyethylene tape.

2.4 LPG GAS PIPING, ABOVE GRADE

- A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
 - 1. Fittings: ASME B16.3, malleable iron, or ASTM A234/A234M forged steel welding type.
 - 2. Joints: Threaded for pipe 2 inch and smaller; welded for pipe 2-1/2 inches and larger.

2.5 FLUE AND COMBUSTION AIR PIPING

- A. PVC Pipe: ASTM D1785, **Schedule 40**, polyvinyl chloride (PVC) material.
 - 1. Fittings: ASTM D2466, Schedule 40, PVC.
 - 2. Joints: ASTM D2855, solvent weld with ASTM D2564 solvent cement. Prime joints with a contrasting color.
- B. PVC Pipe: ASTM D1785, **Schedule 80**, polyvinyl chloride (PVC) material.
 - 1. Fittings: ASTM D2467, Schedule 80, PVC.
 - 2. Joints: ASTM D2855, solvent weld with ASTM D2564 solvent cement. Prime joints with a contrasting color.

2.6 UNIONS AND FLANGES

- A. Unions for Pipe 2 inches and Smaller:
 - 1. Ferrous Piping: Class 150, malleable iron, threaded.
 - 2. Copper Piping: Class 150, bronze unions with soldered joints.
 - 3. Dielectric Connections: Union with galvanized or plated steel threaded end, copper solder end, water impervious isolation barrier.
 - 4. PVC Piping: PVC.
- B. Flanges for Pipe 2-1/2 inches and Larger:
 - 1. Ferrous Piping: Class 150, forged steel, slip-on flanges.
 - 2. Copper Piping: Class 150, slip-on bronze flanges.
 - 3. PVC Piping: PVC flanges.
 - 4. Gaskets: 1/16 inch thick preformed neoprene gaskets.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Section 01 30 00 Administrative Requirements: Verification of existing conditions before starting work.
- B. Verify excavations are to required grade, dry, and not over-excavated.
- C. Verify trenches are ready to receive piping.

3.2 PREPARATION

- A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.
- B. Remove scale and dirt on inside and outside before assembly.
- C. Prepare piping connections to equipment with flanges or unions.

D. Keep open ends of pipe free from scale and dirt. Protect open ends with temporary plugs or caps.

3.3 INSTALLATION - ABOVE GROUND PIPING

- A. Route piping in orderly manner and maintain gradient. Route parallel and perpendicular to walls.
- B. Install piping to maintain headroom without interfering with use of space or taking more space than necessary.
- C. Group piping whenever practical at common elevations.
- D. Sleeve pipe passing through partitions, walls and floors. Refer to Section 22 05 29.
- E. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.
- F. Provide clearance in hangers and from structure and other equipment for installation of insulation and access to valves and fittings. Refer to Section 22 07 00.
- G. Provide access where valves and fittings are not accessible. Coordinate size and location of access doors with Division 08.
- H. Install non-conducting dielectric connections wherever jointing dissimilar metals.
- I. Slope piping and arrange systems to drain at low points.
- J. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.
- K. Install piping penetrating roofed areas to maintain integrity of roof assembly.
- L. Install valves in accordance with Section 22 05 23.
- M. Install pipe identification in accordance with Section 22 05 53.

3.4 INSTALLATION - GAS PIPING SYSTEMS

- A. Install natural gas piping in accordance with NFPA 54.
- B. Install LPG piping in accordance with NFPA 58.
- C. Provide support for utility meters in accordance with requirements of utility company.
- D. Install vent piping from gas pressure reducing valves to outdoors and terminate in weatherproof hood.
- E. Install gas pressure regulator vent full size opening on regulator and terminate outdoors or as indicated on Drawings.

3.5 FIELD QUALITY CONTROL

A. Division 01 - Execution and Closeout Requirements: Field inspecting, testing and adjusting.

- B. Pressure test natural gas piping in accordance with NFPA 54.
- C. Pressure test LPG piping in accordance with NFPA 58.

3.6 CLEANING

A. Division 01 - Execution and Closeout Requirements:Requirements for cleaning.

END OF SECTION

SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig.
 - 2. Suction Lines for Heat-Pump Applications: 380 psig.
 - 3. Hot-Gas and Liquid Lines: 380 psig.
- B. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

1.3 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.4 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or L
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inchlong assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:

- 1. Body and Bonnet: Forged brass or cast bronze.
- 2. Packing: Molded stem, back seating, and replaceable under pressure.
- 3. Operator: Rising stem.
- 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
- 5. Seal Cap: Forged-brass or valox hex cap.

REFRIGERANT PIPING 232300 - 1

- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Working Pressure Rating: 500 psig.
- 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.
- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig.
- 8. Working Pressure Rating: 500 psig.
- 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig.
- E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24 V ac coil.
 - 6. Working Pressure Rating: 400 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
 - 8. Manual operator.
- F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Working Pressure Rating: 400 psig.
 - 6. Maximum Operating Temperature: 240 deg F.
- G. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg.
 - 6. Superheat: Adjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 450 psig
- H. Straight-Type Strainers:
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.

- 4. Working Pressure Rating: 500 psig.
- 5. Maximum Operating Temperature: 275 deg F.
- I. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.
 - 5. Working Pressure Rating: 500 psig.
 - 6. Maximum Operating Temperature: 275 deg F.
- J. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 - 3. Indicator: Color coded to show moisture content in ppm.
 - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
 - 5. End Connections: Socket or flare.
 - 6. Working Pressure Rating: 500 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
- K. Replaceable-Core Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated charcoal.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig.
 - 8. Rated Flow: as indicated on the drawings.
 - 9. Working Pressure Rating: 500 psig.
 - 10. Maximum Operating Temperature: 240 deg F.
- L. Permanent Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated charcoal.
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS ½ connections at entering and leaving sides for pressure differential measurement.
 - 7. Maximum Pressure Loss: 2 psig.
 - 8. Rated Flow: tons as indicated on the drawings.
 - 9. Working Pressure Rating: 500 psig.
 - 10. Maximum Operating Temperature: 240 deg F.
- M. Liquid Accumulators: Comply with ARI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig.
 - 4. Maximum Operating Temperature: 275 deg F.

REFRIGERANT PIPING 232300 - 3

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.
- B. Suction Lines NPS 4 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- D. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- E. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications:
 - 1. NPS 1-1/2 and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 2. NPS 1-1/2 and Smaller: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- F. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- G. Safety-Relief-Valve Discharge Piping:
 - 1. NPS 1-1/2 and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 2. NPS 1-1/2 and Smaller: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install diaphragm packless valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at strainers if they are not an integral part of strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.
- E. Install a full-sized, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve. Install solenoid valves in horizontal lines with coil at top.
- G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Compressor.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve.
- L. Install flexible connectors at compressors.

REFRIGERANT PIPING 232300 - 4

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping in accordance with the equipment manufacturer's recommendations.
- C. Install refrigerant piping according to ASHRAE 15.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Install piping adjacent to machines to allow service and maintenance.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- S. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.

3.4 PIPE JOINT CONSTRUCTION

- A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

A. Install the following pipe attachments:

- 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
- 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
- 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
- 4. Spring hangers to support vertical runs.
- 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- B. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2: Maximum span, 60 inches minimum rod size, 1/4 inch
 - 2. NPS 5/8 Maximum span, 60 inches minimum rod size, 1/4 inch
 - 3. NPS 1 Maximum span, 72 inches minimum rod size, 1/4 inch
 - 4. NPS 1-1/4 Maximum span, 96 inches minimum rod size, 3/8 inch
 - 5. NPS 1-1/2 Maximum span, 96 inches minimum rod size, 3/8 inch
- C. Support multi-floor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Verify that compressor oil level is correct.
 - 2. Open compressor suction and discharge valves.
 - 3. Open refrigerant valves except bypass valves that are used for other purposes.
 - 4. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single wall rectangular ducts and fittings.
- 2. Single wall round ducts and fittings.
- 3. Sheet metal materials.
- 4. Duct liner.
- 5. Sealants and gaskets.
- 6. Hangers and supports.

B. Related Sections:

- 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.

B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.

- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- E. Welding certificates.
- 1.5 QUALITY ASSURANCE
 - A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
 - C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."
 - D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

- 2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
 - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 - B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-

- support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:

- 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted edge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
 - 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.
 - 4. Solids Content: Minimum 60 percent.
 - 5. Shore A Hardness: Minimum 60.
 - 6. Water resistant.
 - 7. Mold and mildew resistant.
 - 8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 9. VOC: Maximum 395 g/L.
 - 10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 - 11. Service: Indoor or outdoor.
 - 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.

- 2. Type: S.
- 3. Grade: NS.
- 4. Class: 25.
- 5. Use: O.
- 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than2-Inch wg: Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 9. Conditioned Space, Supply-Air Ducts in Pressure Classes2-Inch wg and Lower: Seal Class C.
 - 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 - 11. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- 3.5 CONNECTIONS
 - A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
 - B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
- 3.6 PAINTING
 - A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.
- 3.7 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 3. Test for leaks before applying external insulation.
 - 4. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 5. Give seven days' advance notice for testing.
 - C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
 - D. Duct system will be considered defective if it does not pass tests and inspections.
 - E. Prepare test and inspection reports.
- 3.8 DUCT CLEANING
 - A. Clean new duct system(s) before testing, adjusting, and balancing.
 - B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

- 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.
- 3.9 START UP
 - A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."
- 3.10 DUCT SCHEDULE
 - A. Fabricate ducts with galvanized sheet steel unless noted otherwise.
 - B. Supply Ducts:
 - 1. Ducts Connected to Indoor Units and Packaged Heat Pumps:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 3-inch wg.

- b. Minimum SMACNA Seal Class: A.
- c. SMACNA Leakage Class for Rectangular: 12.
- d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Return Ducts:

- 1. Ducts Connected to Indoor Units and Packaged Heat Pumps:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Indoor Units or Packaged Heat Pumps:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 3. Aluminum Ducts: Aluminum.
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.

- 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
- 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.
- H. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300 – AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Backdraft and pressure relief dampers.
- 2. Barometric relief dampers.
- 3. Manual volume dampers.
- 4. Control dampers.
- 5. Fire dampers.
- 6. Ceiling dampers.
- 7. Duct-mounted access doors.
- 8. Flexible connectors.
- 9. Flexible ducts.
- 10. Duct accessory hardware.

B. Related Sections:

- 1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
- 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances, and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control damper installations.
 - d. Fire-damper and ceiling damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Wiring Diagrams: For power, signal, and control wiring.
- C. Source quality-control reports.
- D. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise

indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304.
- D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. American Warming and Ventilating; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. Pottorff; a division of PCI Industries, Inc.
 - 6. Ruskin Company.
 - 7. SEMCO Incorporated.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 1500 fpm.
- D. Maximum System Pressure: 2-inch wg.
- E. Maximum Leakage: 40" wide, 1% of max. flow.
- F. Frame: 0.09-inch- thick extruded aluminum, with welded corners.
- G. Blades: Multiple single-piece blades, maximum 6-inch width, 0.050-inch- thick aluminum sheet with sealed edges.
- H. Blade Action: Parallel.
- I. Blade Seals: Extruded vinyl, mechanically locked.
- J. Blade Axles:
 - 1. Material: Aluminum.
 - 2. Diameter: 0.20 inch.
- K. Tie Bars and Brackets: Aluminum.
- L. Return Spring: Adjustable tension.
- M. Bearings: Steel ball or synthetic pivot bushings.
- N. Accessories: (as noted on plans or required by installation)
 - 1. Electric actuators.
 - 2. Chain pulls.
 - 3. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20-gage minimum.
 - b. Sleeve Length: 6 inches minimum.
 - 4. Screen Mounting: Rear mounted.
 - 5. Screen Material: Aluminum.
 - 6. Screen Type: Bird or Insect (as noted on drawings)
 - 7. 90-degree stops.

2.3 BAROMETRIC RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Air Balance Inc.; a division of Mestek, Inc.
- 2. American Warming and Ventilating; a division of Mestek, Inc.
- 3. Greenheck Fan Corporation.
- 4. Nailor Industries Inc.
- 5. Pottorff; a division of PCI Industries, Inc.
- 6. Ruskin Company.
- 7. SEMCO Incorporated.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 1000 fpm..
- D. Maximum System Pressure: 2-inch wg.
- E. Maximum Leakage: 40" wide, 1% of max. flow.
- F. Frame: 0.09-inch- thick extruded aluminum, with welded corners.
- G. Blades:
 - 1. Multiple, 0.025-inch- thick, roll-formed aluminum.
 - 2. Maximum Width: 2 inches.
 - 3. Action: Parallel.
 - 4. Balance: Gravity.
 - 5. Eccentrically pivoted.
- H. Blade Seals: Vinyl.
- I. Blade Axles: ½" diameter synthetic
- J. Tie Bars and Brackets:
 - 1. Material: Aluminum.
 - 2. Rattle free with 90-degree stop.
- K. Return Spring: Adjustable tension.
- L. Bearings: Synthetic.
- M. Accessories: (as noted on plans or required by installation)
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Flange on intake.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Ruskin Company.
 - 2. Suitable for horizontal or vertical applications.
 - 3. Frames:
 - a. Hat-shaped, galvanized-steel channels, 16-gauge minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 4. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 16-gauge thick.
 - 5. Blade Axles: Galvanized steel.
 - 6. Bearings:
 - a. Molded synthetic.

- b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 7. Tie Bars and Brackets: Galvanized steel.

2.5 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. METALAIRE, Inc.
 - 4. Metal Form Manufacturing, Inc.
 - 5. Nailor Industries Inc.
 - 6. Ruskin Company.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- C. Frames:
 - 1. Hat shaped.
 - 2. Galvanized-steel channels, 0.064 inch thick.
 - 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blades with maximum blade width of 8 inches, airfoil design.
 - 2. Opposed-blade design.
 - 3. Galvanized steel.
 - 4. 14-gauge thickness.
 - 5. Blade Edging: Closed-cell neoprene edging.
 - 6. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- E. Blade Axles: 1/2-inch- diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
- F. Bearings:
 - 1. Stainless-steel sleeve.
 - 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. Nailor Industries Inc.
 - 4. Pottorff; a division of PCI Industries, Inc.
 - 5. NCA Manufacturing.
 - 6. Ruskin Company.
- B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 20-gauge galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.

- 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links (unless noted otherwise).

2.7 CEILING DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. METALAIRE, Inc.
 - 3. Nailor Industries Inc.
 - 4. NCA Manufacturing.
 - 5. Ruskin Company.
- B. General Requirements:
 - 1. Labeled according to UL 555C by an NRTL.
 - 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."
- C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.
- D. Blades: Galvanized sheet steel with refractory insulation.
- E. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links (unless noted otherwise).

2.8 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. Nailor Industries Inc.
 - 4. NCA Manufacturing.
 - 5. Ruskin Company.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.
- D. Blades: Roll-formed, horizontal, interlocking, 16-gauge thickness, galvanized sheet steel. Blades shall be true airfoil blades.
- E. Leakage: Class I.
- F. Rated pressure and velocity to exceed design airflow conditions.
- G. Mounting Sleeve: Factory-installed, 20-gauge thickness, galvanized sheet steel; length to suit wall or floor application.
- H. Damper Motors: two-position action, electric 120V or 24V as noted on the plans.
- I. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC." and Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

- 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
- 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
- 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
- 7. Electrical Connection: 120V or 24V as noted on the drawings.
- J. Accessories: (as indicated on the drawings)
 - 1. Auxiliary switches for or position indication.
 - 2. Momentary test switch, damper mounted.

2.9 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Ductmate Industries, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. McGill AirFlow LLC.
 - 5. Nailor Industries Inc.
 - 6. Pottorff; a division of PCI Industries, Inc.
 - Ruskin
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 - d. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches.
 - d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - 2. Door: Single wall, 12-gauge.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 2" to 10" for positive pressure and -4" to -10" for negative pressure.
 - 5. Doors close when pressures are within set-point range.
 - 6. Hinge: Continuous piano.
 - 7. Latches: Cam.
 - 8. Seal: Neoprene or foam rubber.
 - 9. Insulation Fill: 1-inch- thick, fibrous-glass or polystyrene-foam board.

2.10 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Ventfabrics, Inc.
 - 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.11 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
- C. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 250 deg F.

- 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1-2007.
- D. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action or nylon strap in sizes 3 through 18 inches, to suit duct size.

2.12 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing and manufacturer's instructions.
- H. Connect ducts to duct silencers with flexible duct connectors.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At drain pans and seals.
 - 4. Where noted on plans: Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 5. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 6. Control devices requiring inspection.
 - 7. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.

- L. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- M. Install flexible connectors to connect ducts to equipment.
- N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- O. Connect terminal units to supply ducts directly or with maximum 6-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- P. Connect diffusers or light troffer boots to ducts with maximum 48-inch lengths of flexible duct clamped or strapped in place.
- Q. Connect flexible ducts to metal ducts with approved strap and sealant.
- R. Install duct test holes where required for testing and balancing purposes.
- S. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300

SECTION 233423 – HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. See fan schedule on drawings for additional requirements and specific options required for each fan.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Centrifugal wall ventilators.
 - 2. Ceiling-mounting ventilators.
 - 3. In-line centrifugal fans.
 - 4. Propeller fans.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on sea level.
- B. Operating Limits: Classify according to AMCA 99.

1.4 ACCEPTABLE MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck
 - 2. Loren Cook Company
 - 3. Penn Ventilation
 - 4. Twin City Fans
- B. Listing of manufacturers name does not guarantee approval. All equipment must meet or exceed quality and capacities of specified equipment. Final approval will be based on equipment submittals. Any manufacturer not listed but wishing to bid this project shall submit a written request 14 days prior to bid date, prior approval is required for all manufacturers not listed.

1.5 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, wiring diagrams, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Operation and Maintenance Data: For power ventilators to include operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- D. UL Standard: Power ventilators shall comply with UL 705.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.
- B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.

1.8 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 CENTRIFUGAL WALL VENTILATORS

- A. Description: Direct- or belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and accessories.
- B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.
- C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.
- D. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 - 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 4. Fan and motor isolated from exhaust airstream.
- E. Accessories: (See drawings for required accessories).
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 - 4. Wall Grille: Ring type for flush mounting.
 - 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set to close when fan stops.
 - 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- F. Capacities and Characteristics: As indicated on the drawings.

2.2 CEILING-MOUNTING VENTILATORS

- A. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed in-line applications.
- B. Housing: Steel, lined with acoustical insulation.
- C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- D. Grille: Plastic, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- F. Accessories: (See drawings for required accessories).
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Manual Starter Switch: Single-pole rocker switch assembly with cover and pilot light.
 - 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 - 4. Motion Sensor: Motion detector with adjustable shutoff timer.

- 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
- 6. Filter: Washable aluminum to fit between fan and grille.
- 7. Isolation: Rubber-in-shear vibration isolators.
- 8. Manufacturer's standard roof jack or wall cap, and transition fittings.
- G. Capacities and Characteristics: As indicated on the drawings.

2.3 IN-LINE CENTRIFUGAL FANS

- A. Description: In-line, direct- or belt-driven centrifugal fans consisting of housing, wheel, outlet guide vanes, fan shaft, bearings, motor and disconnect switch, drive assembly, mounting brackets, and accessories.
- B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- C. Direct-Driven Units: Motor mounted in airstream; factory wired to disconnect switch located on outside of fan housing.
- D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 - 3. Companion Flanges: For inlet and outlet duct connections.
 - 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 - 5. Motor and Drive Cover (Belt Guard): Galvanized steel.
- G. Capacities and Characteristics: As indicated on the drawings.

2.4 PROPELLER FANS

- A. Description: Direct- or belt-driven propeller fans consisting of fan blades, hub, housing, orifice ring, motor, drive assembly, and accessories.
- B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.
- C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.
- D. Fan Wheel: Replaceable, extruded-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.
- E. Belt-Driven Drive Assembly: Resiliently mounted to housing, statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
 - 1. Service Factor Based on Fan Motor Size: 1.4.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours.
 - 4. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
 - 5. Motor Pulleys: Adjustable pitch for use with motors through 10 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 6. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 - 7. Belt Guards: Fabricate of steel for motors mounted on outside of fan cabinet.
- F. Accessories: (See drawings for required accessories).

- 1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
- 2. Motor-Side Back Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
- 3. Wall housing: Galvanized steel to match fan and accessory size.
- 4. Weathershield Hood: Galvanized steel to match fan and accessory size.
- 5. Weathershield Front Guard: Galvanized steel with expanded metal screen.
- 6. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 7. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
- G. Capacities and Characteristics: As indicated on the drawings.

2.5 MOTORS

- A. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
- B. Enclosure Type: Totally enclosed, fan cooled.

2.6 SOURCE QUALITY CONTROL

- A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Support units using spring isolators having a static deflection of 1 inch. Vibration- and seismic-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 - 1. Secure vibration and seismic controls to concrete bases using anchor bolts cast in concrete base.
- C. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.
- D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- F. Install units with clearances for service and maintenance.
- G. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
 - 11. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION 233423

SECTION 233713 – DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Rectangular and square ceiling diffusers.
- 2. Perforated diffusers.
- 3. Louver face diffusers.
- 4. Fixed face registers.

B. Related Sections:

- 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
- 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACCEPTABLE MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carnes
 - 2. METALAIRE, Inc.
 - 3. Nailor industries
 - 4. Price
 - 5. Titus
 - 6. Tuttle & Bailey
 - 7. Krueger
- B. Listing of manufacturers name does not guarantee approval. All equipment must meet or exceed quality and capacities of specified equipment. Final approval will be based on equipment submittals. Any manufacturer not listed but wishing to bid this project shall submit a written request 14 days prior to bid date, prior approval is required for all manufacturers not listed.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
- C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.
- D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Duct access panels.
- E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers:
 - 1. Devices shall be specifically designed for variable-air-volume flows.
 - 2. Material: Steel or Aluminum as indicated on the drawings.
 - 3. Finish: Baked enamel, white unless noted otherwise.
 - 4. Face Size: 24 by 24 inches or as indicated on the drawings.
 - 5. Face Style: Four cone.
 - 6. Mounting: As required.
 - 7. Pattern: Fixed.
 - 8. Dampers: Radial opposed blade.

B. Perforated Diffuser:

- 1. Devices shall be specifically designed for variable-air-volume flows.
- 2. Material: Steel backpan and pattern controllers, with steel or aluminum face as indicated on the drawings.
- 3. Finish: Baked enamel, white unless noted otherwise.
- 4. Face Size: 24 by 24 inches or as indicated on the drawings.
- 5. Duct Inlet: Round or Square as indicated on the drawings.
- 6. Face Style: Flush.
- 7. Mounting: T-bar.
- 8. Pattern Controller: Adjustable with louvered pattern modules at inlet.
- 9. Dampers: Radial opposed blade.

C. Louver Face Diffuser:

- 1. Devices shall be specifically designed for variable-air-volume flows.
- 2. Material: Steel or Aluminum as indicated on the drawings.
- 3. Finish: Baked enamel, white unless noted otherwise.
- 4. Face Size: As indicated on the drawings.
- 5. Mounting: As required.
- 6. Pattern: Four-way core style, unless noted otherwise.
- 7. Dampers: Radial opposed blade.

2.2 REGISTERS AND GRILLES

A. Adjustable Bar Register:

- 1. Material: Steel or Aluminum as indicated on the drawings.
- 2. Finish: Baked enamel, white unless noted otherwise.
- 3. Face Blade Arrangement: Horizontal spaced 3/4 inch apart.
- 4. Core Construction: Integral.
- 5. Rear-Blade Arrangement: Vertical spaced 3/4 inch apart.
- 6. Frame: 1-1/4 inches wide.
- 7. Mounting: Concealed.
- 8. Damper Type: Adjustable opposed blade.
- 9. Accessories:
 - a. Rear-blade gang operator.
 - b. Filter.

B. Fixed Face Register:

- 1. Material: Steel or Aluminum as indicated on the drawings.
- 2. Finish: Baked enamel, white unless noted otherwise.
- 3. Face Arrangement: 1/2-by-1/2-by-1/2-inch grid core.
- 4. Core Construction: Integral.
- 5. Frame: 1 inch wide.
- 6. Mounting: Concealed.
- 7. Damper Type: Adjustable opposed blade.

8. Accessory: Filter.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713

SECTION 233723 - HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of roof-mounting intake and relief ventilators:
 - 1. Louver penthouses.
 - 2. Roof hoods.
 - 3. Goosenecks.
- B. Related Sections include the following:
 - 1. Division 08 Section "Louvers and Vents" for ventilator assemblies provided as part of the general construction.
 - 2. Division 23 Section "HVAC Power Ventilators" for roof-mounting exhaust fans.

1.3 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Intake and relief ventilators shall be capable of withstanding the effects of gravity loads, wind loads, seismic loads (if required), and thermal movements without permanent deformation of components, noise or metal fatigue, or permanent damage to fasteners and anchors.
- B. Water Entrainment: Limit water penetration through unit to comply with ASHRAE 62.1-2007.

1.4 ACCEPTABLE MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck
 - 2. Loren Cook Co.
 - 3. Penn Ventilation
 - 4. Ruskin
- B. Listing of manufacturers name does not guarantee approval. All equipment must meet or exceed quality and capacities of specified equipment. Final approval will be based on equipment submittals. Any manufacturer not listed but wishing to bid this project shall submit a written request 14 day prior to bid date, prior approval is required for all manufacturers not listed.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.
- B. Shop Drawings: For intake and relief ventilators. Include details and ventilator attachments to curbs and curb attachments to roof structure.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Source Limitations: Obtain ventilators through one source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of intake and relief ventilators and are based on the specific equipment indicated. Refer to Division 01 Section "Product Requirements."
 - 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
- C. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.2, "Structural Welding Code--Aluminum."

2. AWS D1.3, "Structural Welding Code--Sheet Steel."

1.7 COORDINATION

A. Coordinate installation of roof curbs and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5 or T-52.
- B. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming or as otherwise recommended by metal producer for required finish.
- C. Galvanized-Steel Sheet: ASTM A 653/A 653M, G90 zinc coating, mill phosphatized.
- D. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel, unless otherwise indicated. Do not use metals that are incompatible with joined materials.
 - 1. Use types and sizes to suit unit installation conditions.
 - 2. Use hex-head or Phillips pan-head screws for exposed fasteners, unless otherwise indicated.
- E. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, made from stainless-steel components, with capability to sustain, without failure, a load equal to 4 times the loads imposed, for concrete, or 6 times the load imposed, for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187, when noted on the drawings.

2.2 FABRICATION, GENERAL

- A. Factory or shop fabricate intake and relief ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.
- B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
- C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.
- D. Fabricate supports, anchorages, and accessories required for complete assembly.
- E. Perform shop welding by AWS-certified procedures and personnel.

2.3 LOUVER PENTHOUSES

- A. Construction: All-welded assembly with 4-inch-deep louvers, mitered corners, and aluminum sheet roof.
- B. Frame and Blade Material and Nominal Thickness: Galvanized-steel sheet, of thickness required to comply with structural performance requirements, but not less than 0.052 inch for frames and 0.052 inch for blades.
 - 1. Blade Spacing: 4".
 - 2. Blade Angle: 45 degrees.
 - 3. Air Performance: Not more than 0.10-inch wg static pressure drop at 750-fpm free-area velocity.
 - 4. AMCA Seal: Mark units with the AMCA Certified Ratings Seal.
 - 5. Exterior Corners: Prefabricated corner units with mitered and welded blades and with fully recessed mullions at corners.
- C. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall, Height: 12 inches unless noted otherwise.
- D. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.

E. Galvanized-Steel Sheet Finish:

- 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it
- 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
- 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.

2.4 ROOF HOODS

- A. Factory or shop fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figures 5-6 and 5-7.
- B. Materials: Galvanized-steel sheet, minimum 0.064-inch- thick base and 0.040-inch- thick hood; suitably reinforced.
- C. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall, Height: 12 inches unless noted otherwise.
- D. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.
- E. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 - 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
 - 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.

2.5 GOOSENECKS

- A. Factory or shop fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 5-5; with a minimum of 0.052-inch- thick, galvanized-steel sheet.
- B. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall, Height: 12 inches.
- C. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.
- D. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 - 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.

- 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install intake and relief ventilators level, plumb, and at indicated alignment with adjacent work.
- B. Secure intake and relief ventilators to roof curbs with cadmium-plated hardware. Use concealed anchorages where possible. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.
- C. Install goosenecks on curb base where throat size exceeds 9 by 9 inches.
- D. Install intake and relief ventilators with clearances for service and maintenance.
- E. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- F. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Division 07 Section "Joint Sealants" for sealants applied during installation.
- G. Label intake and relief ventilators according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."
- H. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
- I. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories.

3.3 ADJUSTING

A. Adjust damper linkages for proper damper operation.

END OF SECTION 233723

SECTION 235250 – VRF EQUIPMENT

PART 1: GENERAL

1.1 SECTION INCLUDES

- A. System Heat Recovery Condensing Unit
- B. Zone Ducted Unit
- C. Zone Cassette Unit
- D. Zone Wall-mounted unit

1.2 RELATED SECTIONS

- A. Section 15170 Motors.
- B. Section 15242 Vibration Isolation.
- C. Section 15290 Ductwork Insulation.
- D. Section 15885 Air Cleaning.
- E. Section 15952 Controls and Instrumentation.
- F. Section 16180 Equipment Wiring Systems.

1.3 SUBMITTALS

- A. Submit unit performance data including: capacity, nominal and operating performance.
- B. Submit Mechanical Specifications for unit and accessories describing construction, components and options.
- C. Submit shop drawings indicating overall dimensions as well as installation, operation and services clearances. Indicate lift points and recommendations and center of gravity. Indicate unit shipping, installation and operating weights including dimensions.
- D. Submit data on electrical requirements and connection points. Include recommended wire and fuse sizes or MCA, sequence of operation, safety and start-up instructions.
 - E. Shop drawings submitted for approval shall be accompanied by a copy of the purchase agreement between the Contractor and an authorized service representative of the manufacturer for check, test and start up and first year service.
 - F. The manufacturer shall use manufacturer's VRF selection software for a complete design of the refrigerant pipe lengths, sizing, and other required specialties. Submittals shall include pipe lengths, number of elbows, controls wiring, power wiring diagram, additional refrigerant charge, and other appurtenances required for a complete and operational system.

1.4 DELIVERY, STORAGE and HANDLING

- A. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.
- B. Protect units from physical damage. Leave factory shipping covers in place until installation.

1.5 WARRANTY

- A. Equipment warranty shall be from date of substantial completion, as agreed to by the owner, or date of owner occupancy, whichever comes first.
- B. Provide parts warranty for one year from start-up or 18 months from shipment, whichever occurs first.
- C. Provide five year extended parts warranty for compressors.

1.5 SIMULTANEOUS COOLING AND HEATING VRF SYSTEM

Heat recovery system shall be an air cooled, system consisting of one to three outdoor unit(s) connected to zone refrigerant distribution systems and indoor units. Zone distribution systems shall allow simultaneous heating and cooling of individual zones. Communication between components shall be provided as an integrated feature of the VRF system. The heat recovery system shall be capable of operating with 208 Volt, 60Hz, 3 phase power.

1.6 REFERENCES

- A. Heat recovery systems shall have published performance ratings certified by AHRI (Air-Conditioning, Heating, and Refrigeration Institute) and listed in the AHRI Standard 1230 certified product directory www.AHRInet.org.
 - B. Heat recovery system components shall be manufactured in production facilities maintaining the following ISO certifications:
 - a) ISO 9001 Quality Management System

- b) ISO 14001 Environmental Management System
- C. Heat recovery system components shall comply with Underwriters Laboratories (UL) 1995 Heating and Cooling Equipment Standard for Safety and bear the Electrical Testing Laboratories (ETL) label.
- D. Heat recovery system field provided electrical power wiring shall be installed according to National Electrical Code (NEC) and all local authorities having jurisdiction (AHJs)

1.7 EXTRA MATERIALS

A. Provide one set of operational filters, and set of spare filters.

PART 2: PRODUCTS

2.1 SUMMARY

- A. The contractor shall furnish and install packaged outdoor air unit(s) as shown and scheduled on the contract documents. The unit(s) shall be installed in accordance with this specification and perform at the specified conditions as scheduled.
- B. APPROVED MANUFACTURERS:
 - 1. Daikin
 - 2. Mitsubishi
 - 3. L.G.

2.2 GENERAL UNIT DESCRIPTION

Variable Refrigerant Flow (VRF) HVAC system shall be a variable capacity, direct expansion (DX) heat recovery engineered system. The outdoor unit shall consist of one or more cabinet(s) connected through common refrigerant piping. Each system shall have single or multiple, inverter compressor(s). Each system shall be connected to multiple indoor units (IDUs - ducted, non-ducted or combination thereof) through a common refrigerant piping and integrated system controls. Each indoor unit shall be controlled individually. Additionally heat recovery system shall be capable of simultaneous heating and cooling individual zone(s).

2.3 SYSTEM HEAT RECOVERY CONDENSING UNIT

- A. Outdoor Unit shall be capable of maintaining continuous compressor operation under all of the following operating ambient air conditions.
 - a) Heat Recovery System
 - (i) All IDUs Cooling: 14°F DB to 122°F DB
 - (ii) All IDUs Heating: -13°F WB to 61°F WB
 - (iii) Cooling based synchronous: 14°F DB to 81°F DB
 - (iv) Heating-based synchronous: 14°F WB to 61°F WB
- B. The VRF system shall maintain normal heating and/or cooling operation at all IDUs while any one IDU is powered down for service. When power is restored to the IDU serviced, normal operation shall be restored with no system shutdown, interruption, reset, or power cycling of the outdoor unit.
- C. The air-conditioning system shall use R410A refrigerant.
- D. Each system shall have one, two or three air source outdoor units.
- E. Multi-frame configurations shall be field piped together using manufacturer's designed and supplied Y-branch kit and field provided interconnecting pipe to form a common refrigerant circuit.
- F. Refrigerant circuit configuration for Heat Recovery System
 - a. The refrigerant circuit shall be constructed using field provided copper piped together with manufacturer supplied zone distribution system(s) and Y-branches or Header fittings connected to multiple (ducted, non-ducted or

- combination thereof) indoor units to effectively and efficiently control the simultaneous heating and cooling operation of the VRF system.
- b. Each refrigerant pipe, y-branch, header kit, elbows and valves shall be individually insulated with no air gaps. All joints shall be glued and sealed.
- G. Factory installed microprocessor controls in the outdoor unit(s), HR unit(s), and indoor unit(s) shall perform functions to efficiently operate the VRF system and communicate in a daisy chain configuration between outdoor unit and HR unit(s) and indoor unit(s) over a RS485 18AWG stranded and twisted wire data link.
- H. The system shall be designed to accept connection up to 64 indoor units.
- I. The total nominal capacity of all indoor units shall be no less than 50% and no more than 130% of outdoor unit's nominal capacity to ensure the VRF system will have sufficient capacity to meet the building's cooling and heating load at design day weather conditions.
- J. The maximum allowable system combination ratio shall be 130%. Systems designed with a combination ratio above 130% will not be accepted.
- K. Each outdoor unit refrigerant circuit shall have a high-pressure safety threaded rupture disk or threaded fusible plug fitting.
- L. The outdoor unit assembly, indoor unit assembly and/or zone distribution system assembly shall be shipped from the factory assembled and pressure tested including internal refrigerant piping, compressor, contacts, relay(s), control components, power and communications wiring necessary.
- M. Each outdoor unit refrigeration circuit shall have the following components:
 - a. Inverter variable speed compressor(s)
 - b. Outdoor unit heat exchanger
 - c. Refrigerant strainer(s)
 - d. Check valve(s)
 - e. Oil separator
 - f. Accumulator
 - g. Heat exchanger circuiting control
 - h. Electronic expansion valve(s)
 - i. 4-way reversing valve
 - i. Sub-cooler circuit with controls
 - k. High and low side Schrader valve service ports with caps.
 - 1. Service valves
- N. Each outdoor unit frame shall have a stand-alone microprocessor control that varies the use of the outdoor coil circuits to optimize the use of heat transfer surface. Control shall be able to dynamically change the path and coil circuiting based on one of the following operating parameters: head pressure, suction pressure, system subcooling requirements, available refrigerant charge, system mode of operation, coil heat transfer efficiency—shall have a variable flow path heat exchanger function to vary the refrigerant flow path based on system operating mode and operating conditions.
 - a. System inverter compressors shall have a mid-stage, medium pressure vapor economizer apparatus to maximize refrigerant compression efficiency.

- b. System accumulator shall be provided with controls that continuously monitors, modifies, and controls the amount of refrigerant in circulation (active refrigerant charge) while the system is operating. The active refrigerant charge microprocessor shall monitor system high and low side gas pressure, coil approach temperature, liquid line temperature and pressure, and system sub-cooling requirement to control the refrigerant charge.
- c. System shall comprise of the following frame configurations.

O. Refrigerant Pipe System Design Parameters

- a. The outdoor unit shall be capable of operating at an elevation difference of up to 360 feet above or below the lowest or highest indoor unit respectively.
- b. The outdoor unit shall be capable of operating with up to 3280 equivalent length feet of interconnecting liquid line refrigerant pipe in the network.
- c. The outdoor unit shall be capable of operating with up to 656 actual feet or 738 equivalent length feet of liquid line refrigerant pipe spanning between outdoor unit and farthest indoor unit.

P. Defrost Operations

a. The outdoor unit(s) shall be capable of defrost operation to melt accumulated frost, snow and ice that may have accumulated on the outdoor unit heat exchanger. The defrost cycle length and sequence shall be based on outdoor ambient temperatures, outdoor unit heat exchanger temperature, and various differential pressure variables.

b. Indoor Unit Fan Operation During Defrost

- i. During partial defrost operation indoor units operating in cooling or dry mode shall continue normal operation.
- ii. During partial defrost operation, indoor units that are commissioned with fans set for continuous operation shall maintain normal fan speed unless the leaving air temperature drops, then the fan speed will be reduced to low speed for the remainder of the defrost cycle.
- iii. During full system defrost operation, indoor unit fans will cycle off and remain off during the remainder of the defrost cycle.

Q. Oil Management

- a. Each outdoor unit shall have an independently operating Hi-POR (High Pressure Oil Return) system to maximize compressor efficiency and ensure a consistent film of oil on all moving compressor parts at all speeds.
- b. The oil return system shall include a dedicated centrifugal oil separator for each compressor designed to extract oil from the oil/refrigerant gas stream leaving the compressor.
- c. Oil collected by each compressors independent oil return system shall be returned directly to the compressor oil sump passively without the use of mechanical pumps or other apparatus.
- d. Oil return systems that depend on differential pressure to return oil to the compressor sump, for example bleeding off or bypassing any amount of high pressure gas to push oil back to the compressor sump or the suction inlet of the compressor chamber, shall not be accepted.

- e. Compressor oil shall be maintained at the same temperature as the discharge gas leaving the compressor to prevent any blending of refrigerant and oil to maintain stable oil viscosity during compressor operation.
- f. The oil return system shall not inject, blend, or otherwise mix collected oil with suction vapor refrigerant before entering the compressor scroll or other gas compression apparatus.
- g. The oil return system shall provide an oil level monitor for each compressor that provides continuous feedback to the outdoor unit microprocessor.
- h. The microprocessor shall initiate an oil return cycle when the oil level monitoring sensor indicates a low oil level in the compressor sump.
- Timed and/or scheduled unmonitored oil return operations and/or any oil return system that does not initiate an oil return cycle based on compressor sump low level reading shall not be permitted.

R. Cabinet

- a. Outdoor unit cabinet shall be made of 20 gauge galvanized steel with an enamel finish.
- b. Outdoor unit cabinet shall have a heavy gauge coated wire coil guard.
- c. Outdoor unit cabinet finish shall have been tested in accordance with ASTM
 B-117 salt spray test procedure for a minimum of 1000 hours.
- d. All internal serviceable components shall be accessible by removing the front panel of the unit. Outdoor units that require the removal of side and/or rear service panels shall not be permitted.
- e. A controls maintenance and unit diagnostic access port shall be provided in front of the microprocessor to allow quick access to read service codes, set DIP switches, perform microprocessor operational checks, address system components and extract operational data without removing the unit's front panel(s).
- f. The controls access port shall be no larger than 6-1/4" x 6-3/4" to the possibility of weather related moisture entering the control panel while service is in progress.
- g. A baked galvanized steel access port cover with a baked enamel finish (color matching unit cabinet) shall be provided and easily removed.
- h. Controls access port cover shall be secured to the unit with a factory provided braided steel wire lanyard to prevent loss/damage to the port cover.
- i. The cabinet shall be designed with pre-punched pipe and electrical knockouts. Cabinet shall be designed to accept connection of refrigerant pipe, power cable, and communications wiring either:
 - i. Through the front panel
 - ii. Through the right side
 - iii. Through the unit's base pan (bottom)
- j. Only one fan blade per fan motor shall be accepted. Dual fan assemblies driven by a double-end shaft motor shall not be permitted.

- k. Each fan blade and motor assembly shall be balanced, tested, and mounted to the unit frame using a means of isolation that will eliminate any objectionable audible harmonic or vibration being transferred to the unit frame.
- A raised ferrous wire metal guard with a baked enamel finish (color matching unit cabinet) shall be provided to prevent large object and animal contact with moving parts.
- m. The outdoor fan inverter drive shall be provided with a DIP switch that reprograms the DC inverter drive to allow outdoor unit fan assemblies to operate under high discharge static conditions (up to 0.32 in-wg external static pressure) such as a ducted discharge application.

S. Outdoor Unit Coil

- a. Shall be a variable path design.
- b. Shall be provided and built by the VRF outdoor unit provider.
- c. It shall be comprised of aluminum fins mechanically bonded on copper tubing.
- d. The copper tubes shall be internally ribbed to maximize heat transfer. Smooth bore tubes are not acceptable.
- e. The aluminum fin heat transfer surfaces shall be treated to maximize the life of the fin material. Coil fin heat transfer surfaces shall be treated with a factory applied corrosion resistant coating. Coating of fins shall be a two-step process. Base coat shall be an anticorrosive paint specifically engineered for bonding to bare aluminum. The top coat shall be a Hydrophilic paint with a gloss finish to protect the anti-corrosion coat. Hydrophilic paint shall be specifically formulated to promote liquid precipitation runoff and assist in minimizing particulate debris from sticking to the fin's heat transfer surfaces.
- f. Fin material coating shall be tested in accordance with ASTM B-117 salt spray test procedure for a minimum of 1000 hours.
- g. All the outdoor units shall have a minimum of a 3 row heat exchanger.

T. Compressor:

- a. Each 6, 8, 10 ton frames shall be equipped with one hermetically sealed, inverter driven, High Side Shell (HSS) scroll compressor.
- b. The 12 and 14 ton frames shall be equipped with two hermetically-sealed, inverter-speed controlled scroll compressors.
- c. Outdoor unit frames containing constant speed 50-60 Hz compressor(s) or containing a constant speed 50-60 Hz compressor in combination with an inverter compressor(s) are not acceptable.
- d. Each inverter driven, HSS scroll compressor shall be capable of operating in a frequency range from 15 Hz to 150 Hz with control in 0.5 Hz increments.
- e. Each compressor shall be equipped with a minimum of a 60 Watt crankcase heater.
- f. The compressor shall be provided from the factory with a full charge of Polyvinyl Ether (PVE) oil. Ester based oils are not acceptable (POE) to prevent gum from forming in the system in the case of a motor burn.
- g. All compressor bearing(s) shall have TeflonTM coating.

- h. All compressors shall be protected with:
 - i. High Pressure switch
 - ii. Over-current/under current protection
 - iii. Phase failure
 - iv. Phase reversal

U. Sound Levels

a. Outdoor unit noise levels shall not exceed 60 dB A. Test protocol includes a sound level measurement taken at an elevation of 5 ft. above the mounting surface at the center point of the width of the outdoor unit frame at a distance of 1 meter in front of the front panel surface with all fans running at absolute maximum motor design speed at all unit operating modes including high heating mode in an anechoic chamber using ISO3745 test standard protocol.

V. Sensors

- a. Each single cabinet shall have:
 - i. Suction temperature sensor
 - ii. Discharge temperature sensor
 - iii. High Pressure sensor
 - iv. Low Pressure sensor
 - v. Outdoor temperature sensor
 - vi. Outdoor unit heat exchanger temperature sensor

2.4 REFRIGERANT ZONE DISTRIBUTION SYSTEMS

A. General

- a. HR unit shall be designed and manufactured by the same manufacturer of VRF indoor unit(s) and outdoor unit(s).
- a) HR unit casing shall be made with galvanized steel and have a galvanized steel finish.
- b) HR unit shall be powered using a 208-230V/1-phase/60Hz power supply.
- c) HR Unit shall be an intermediate refrigerant control device between the air source outdoor unit and the indoor units to control the systems simultaneous cooling and heating operation.
- d) HR unit shall be engineered to work with a heat recovery piping system, whether it is two-pipe, or three-pipe.
- e) HR unit shall be a multi-port design capable of serving between one and 8 indoor units per HR unit port with a combined cooling nominal capacity of 54 Mbh per IDU port. HR units shall be able to accept/service at least two indoor units per HR unit up to a combined connected IDU cooling capacity of 192 Mbh.
- f) VRF system controller shall be capable of accommodating up to 16 HR units connected to HR units piped in a single series string.
- g) Each port shall be capable of operating in cooling or heating independently regardless of the operating mode of any other port on the HR unit or in the system.
- h) HR unit shall be internally piped, wired, assembled, leak and run tested at the factory.

- i) HR unit shall be designed for installation in a conditioned environment and provided with factory applied insulation on all cold surfaces.
- j) HR unit shall have a liquid bypass circuit between the high pressure vapor and the low pressure vapor pipes.
- k) Each port IDU port shall have a pair (2) two-position solenoid valves.
- l) HR unit shall have a balancing valve to control the pressure between the high pressure and low pressure pipe during mode switching.
- m) HR unit shall contain a sub-cooler circuit with stand-alone controls for each HR unit.
- n) HR cold surface pipes shall be factory insulated to prevent condensation.
- o) HR unit shall not require a condensate drain. Manufacturer's providing HR models that require a condensate drain line shall reimburse the pipe fitter or others responsible for the portion of the cost associated with the condensate drain system design, parts, and installation.
- p) All field provided refrigerant piping and VRF system refrigerant piping components between outdoor unit and HR unit and from HR unit to indoor unit shall be field insulated.
- q) The HR unit shall not exceed a net unit weight of 49 lbs.

2.5 3-PHASE VRF SYSTEM PIPING CAPABILITIES

- A. The elevation differences for heat recovery systems shall be:
 - a. Zone Distribution System (HRU) to connected indoor unit shall be 49 feet.
 - b. HRU to HRU shall be 49 feet.
 - c. Indoor unit to indoor unit connected to same HRU shall be 49 feet.
 - d. Indoor unit to indoor unit connected to separate parallel HRU's shall be 131 feet.
 - e. The acceptable elevation difference between two series connected HR units shall be <u>16</u> <u>feet</u>.

2.6 CONTROLS

- A. HR unit(s) shall have factory installed unit mounted control boards and integral microprocessor to communicate with indoor units and outdoor units over a single stranded, shielded, twisted wire pair.
- B. Manufacturer shall provide screw terminal connections at the HR unit to terminate power wiring and communications cables.
- C. Each VRF system shall be provided with a BAS gateway to building's DDC system, so that it can monitor, communicate, and adjust all alarms, setpoints, overrides, sensor readings, etc., as indicated in Sequence of Operations and Points List on the construction drawings. The BAS gateway must be open protocol to allow future programming and adjustment by the owner, or owner's representative.

2.7 ZONE DUCTED UNIT

- A. The indoor unit shall be a factory-assembled, concealed, fan coil unit, operable with R-410A refrigerant, equipped with an electronic expansion valve, for hanging above a ceiling in a non-conditioned space. Computerized PID control shall be used to maintain room temperature within 1°F. The unit shall be powered by 208 Volt, 60 Hz, single phase electrical wiring.
- B. Coils shall be direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.

- a. Refrigerant connections shall be flare connections.
- C. Condensate pan shall be located under the coil.
- D. Fan shall be direct-drive turbo type with statically and dynamically balanced impeller with high and low fans speeds.
 - a. Fan motor shall be thermally protected.
- E. Controls:
 - a. The unit shall be compatible with interfacing with connection to building BMS system.
- F. Filter
 - a. Return air shall be filtered through a min. MERV-6 1" throwaway filter. Provide one set of construction filters and one set of replacement filters. Coordinate filter storage with owner.
- G. Accessories:
 - a. Wall-mounted temperature sensor with override, capable of full operation of unit's control sequences.
 - b. Spring hangers for vibration isolation
 - c. Disconnect switch
 - d. Filters
 - e. Return plenum
 - f. Filter flange
 - g. 1" MERV-6 (min.) filter

2.8 ZONE CASSETTE UNIT

- A. The indoor unit shall be a factory-assembled, fan coil unit mounted at ceiling level, operable with R-410A refrigerant, equipped with an electronic expansion valve, for installation into an ACT or gypsum board ceiling within a conditioned space. Computerized PID control shall be used to maintain room temperature within 1°F. The unit shall be powered by 208 Volt, 60 Hz, single phase electrical wiring.
- B. Coils shall be direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.
 - a. Refrigerant connections shall be flare connections.
- C. Condensate pan shall be located under the coil.
- D. Fan shall be direct-drive turbo type with statically and dynamically balanced impeller with high and low fans speeds.
 - a. Fan motor shall be thermally protected.
- E. Controls:
 - a. The unit shall be compatible with interfacing with connection to building BMS system.
- F. Filter
 - a. Return air shall be filtered by means of a washable long-life filter with mildew proof resin.
- G. The unit shall have knock-out(s) for distributing air via branch ductwork to other areas of the building. Knock-outs shall be minimum 6"x4" each. Where multiple ducts are shown from the unit, the unit must have available 6"x4" knock-outs for each duct.
- H. Accessories:
 - a. Wall-mounted temperature sensor with override, capable of full operation of unit's control sequences.
 - b. Integral condensate drain pump with a minimum lift of 21".
 - c. Ceiling grille
 - d. Disconnect switch
 - e. Branch duct connections
 - f. filters

2.9 ZONE WALL-MOUNTED UNIT

- A. The indoor unit shall be a factory-assembled, wall-mounted, fan coil unit, operable with R-410A refrigerant, equipped with a electronic expansion valve, for installation onto a wall within a conditioned space. Computerized PID control shall be used to maintain room temperature within 1°F. The unit shall be powered by 208 Volt, 60 Hz, single phase electrical wiring.
- B. Coils shall be direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.
 - h. Refrigerant connections shall be flare connections.
- C. Condensate pan shall be located under the coil.
- D. Fan shall be direct-drive turbo type with statically and dynamically balanced impeller with high and low fans speeds.
 - a. Fan motor shall be thermally protected.

E. Controls:

a. The unit shall be compatible with interfacing with connection to building BMS system.

F. Filter

a. Return air shall be filtered by means of a washable long-life filter with mildew proof resin.

G. Accessories:

- a. Wall-mounted temperature sensor with override, capable of full operation of unit's control sequences.
- b. Integral condensate drain pump with a minimum lift of 21".
- c. Wall-mounting hardware
- d. Disconnect switch
- e. filters

PART 3 – EXECUTION

3.1 INSTALLATION

- A. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- B. Install roof-mounted, compressor-condenser components on equipment supports specified in Division 07 Section "Roof Accessories." Anchor units to supports with removable, cadmiumplated fasteners.
- C. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 1 inch. Refer to Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

1.2 CONNECTIONS

- A. Connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.
- B. Connect supply and return condenser connections with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.
- C. Install piping adjacent to unit to allow service and maintenance.

1.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connection, and to assist in field testing. Report results in writing.
- B. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- C. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Remove malfunctioning units, replace with new components, and retest.
- D. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 23 52 50

SECTION 237200 – DEDICATED OUTSIDE AIR SYSTEM (DOAS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This section includes the design, controls and installation requirements for packaged outdoor, heating and cooling makeup air handling units (DOAS-1).

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, and location and size of each field connection. Prepare the following by or under the supervision of a qualified professional engineer:
 - 1. Design Calculations: For selecting and designing restrained vibration isolation roof-curb rails.
 - 2. Mounting Details: For securing and flashing roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 - 3. Wiring Diagrams: Power, signal, and control wiring.
- C. Startup service reports.
- D. Operation and Maintenance Data: For rooftop replacement-air units to include in emergency, operation, and maintenance manuals.
- E. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of rooftop replacement-air units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IESNA 90.1-2007 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.5 COORDINATION

- A. Coordinate size, installation, and structural capacity of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."
- B. Coordinate size, location, and installation of rooftop replacement-air unit manufacturer's roof curbs and equipment supports with roof Installer.
 - 1. Coordinate installation of restrained vibration isolation roof-curb rails, which are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components listed below that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five (5) years from date of Substantial Completion.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set for each unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AAON, Inc.
 - 2. Desert Aire
 - 3. Engineered Air
 - 4. Greenheck

2.2 GENERAL DESCRIPTION

- 1. Packaged rooftop unit shall include compressors, evaporator coils, filters, supply fans, dampers, air-cooled condenser coils, condenser fans, electric heaters, exhaust fans, energy recovery wheels, and unit controls.
- 2. Unit shall be factory assembled and tested including leak testing of the coils, pressure testing of the refrigeration circuit, and run testing of the completed unit. Run test report shall be supplied with the unit in the controls compartment's literature pocket.
- 3. Unit shall have decals and tags to indicate lifting and rigging, service areas and caution areas for safety and to assist service personnel.
- 4. Unit components shall be labeled, including pipe stub outs, refrigeration system components and electrical and controls components.
- 5. Estimated sound power levels (dB) shall be shown on the unit ratings sheet.
- 6. Installation, Operation and Maintenance manual shall be supplied within the unit.
- 7. Laminated color-coded wiring diagram shall match factory installed wiring and shall be affixed to the interior of the control compartment's access door.
- 8. Unit nameplate shall be provided in two locations on the unit, affixed to the exterior of the unit and affixed to the interior of the control compartment's access door.

B. Construction

- 1. All cabinet walls, floors, and roof shall be fabricated of two-inch double wall foam panels cabinet impact resistant, rigid panels with a thermal resistance of R-13 (or greater).
- 2. Unit construction shall be double wall with G90 galvanized steel on both sides and a thermal break with no metal path from inside to outside the cabinet. Double wall construction with a thermal break prevents moisture accumulation on the insulation, provides a cleanable interior, prevents heat transfer through the panel, and prevents exterior condensation on the panel.
- 3. Unit shall be designed to reduce air leakage and infiltration through the cabinet. Cabinet leakage shall not exceed 1% of total airflow when tested at 3 times the minimum external static pressure provided in AHRI Standard 340/360. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, at a maximum 8 inches of positive or negative static pressure, to reduce air leakage. Deflection shall be measured at the midpoint of the panel height and width. Continuous sealing shall be included between panels and between access doors and openings to reduce air leakage. Refrigerant piping and electrical conduit through cabinet panels shall include sealing to reduce air leakage.
- 4. Roof of the air tunnel shall be sloped to provide complete drainage. Cabinet shall have rain break overhangs above access doors.
- 5. Access to filters, dampers, cooling coils, heaters, supply fans, exhaust fans, energy recovery wheels, compressors, and electrical and controls components shall be through hinged access doors with quarter turn, zinc cast, lockable handles. Full-length stainless-steel piano hinges shall be included on the doors.

- 6. Exterior paint finish shall be capable of withstanding at least 2,500 hours, with no visible corrosive effects, when tested in a salt spray and fog atmosphere in accordance with ASTM B 117-95 test procedure.
- 7. Units with cooling coils shall include double sloped 304 stainless steel drain pans.
- 8. Unit shall be provided with base discharge and return air openings. All openings through the base pan of the unit shall have upturned flanges of at least 1/2 inch in height around the opening.
- 9. Unit shall include lifting lugs on the top of the unit.

Options:

a. Unit shall include factory installed, painted galvanized steel condenser coil guards on the face of the condenser coil.

C. Electrical

. Unit shall be provided with standard power block for connecting power to the unit.

2. Options:

- a. Unit shall be provided with factory installed and factory wired, non-fused disconnect switch.
- b. Unit shall have a 65 kAIC SCCR.
- c. Air-source heat pump shall include an optimized start defrost cycle to prevent frost accumulation on the outdoor coil during heat pump heating operation and to minimized defrost cycle energy usage. If the temperature of the outdoor heat exchanger and/or the suction line is less than a predetermined value, a deferred defrost cycle is initiated wherein the defrost cycle starts after a variable, continuously optimizing, time interval has elapsed. The defrost cycle is terminated when the relative temperatures of the outdoor heat exchanger and/or the suction line indicate that sufficient frost is melted from the heat exchanger to insure adequate time between successive defrost cycles for optimizing the efficiency and reliability of the system, or after a predetermined time interval has elapsed, whichever condition occurs first. During defrost cycle all compressors shall energize, reversing valves shall de-energize, and auxiliary heat shall energize.
- d. Unit shall be provided with phase and brown out protection which shuts down all motors in the unit if the electrical phases are more that 10% out of balance on voltage, the voltage is more that 10% under design voltage, or on phase reversal.
- e. Unit shall be provided with manual reset low temperature limit controls which shut off the unit when the discharge temperature reaches a field adjustable setpoint.
- f. Unit shall be provided with blower auxiliary contacts on the low voltage terminal block which close when the supply fans are energized.
- g. Unit shall be provided with remote stop/start terminals which require contact closure for unit operation. When these contacts are open the low voltage circuit is broken and the unit will not operate.

D. Supply Fans

- 1. Unit shall include direct drive, unhoused, backward curved, plenum supply fans.
- 2. Blowers and motors shall be dynamically balanced and mounted on rubber isolators.
- 3. Motors shall be premium efficiency ODP with ball bearings rated for 200,000 hours service with external lubrication points.

Options:

a. Variable frequency drives shall be factory wired and mounted in the unit. Fan motors shall be premium efficiency.

E. Cooling Coils

1. Evaporator Coils

- a. Coils shall be designed for use with R-410A refrigerant and constructed of copper tubes with aluminum fins mechanically bonded to the tubes and galvanized steel end casings. Fin design shall be sine wave rippled.
- b. Coils shall have interlaced circuitry and shall be standard capacity.
- c. Coils shall be helium leak tested.
- d. Coils shall be furnished with a factory installed thermostatic expansion valves.

F. Refrigeration System

- 1. Unit shall be factory charged with R-410A refrigerant.
- 2. Compressors shall be scroll type with thermal overload protection, independently circuited, and carry a 5-year non-prorated warranty.
- 3. Compressors shall be mounted in an isolated service compartment which can be accessed without affecting unit operation. Lockable hinged compressor access doors shall be fabricated of double wall, rigid polyurethane foam insulated panels to prevent the transmission of noise outside the cabinet.
- 4. Compressors shall be isolated from the base pan with the compressor manufacturer's recommended rubber vibration isolators, to reduce any transmission of noise from the compressors into the building area.
- 5. Each refrigeration circuit shall be equipped with thermostatic expansion valve type refrigerant flow control.
- 6. Each refrigeration circuit shall be equipped with automatic reset low pressure and manual reset high pressure refrigerant safety controls, Schrader type service fittings on both the high pressure and low-pressure sides, and factory installed liquid line filter driers.
- 7. Unit shall include 2 stages of capacity control. Options:
 - a. Lead refrigeration circuit(s) shall be provided with hot gas reheat coil, modulating valves, electronic controller, supply air temperature sensor and a dehumidification control signal terminal which allow the unit to have a dehumidification mode of operation, which includes supply air temperature control to prevent supply air temperature swings and overcooling of the space.
 - b. Unit shall be configured as an air-source heat pump. Each refrigeration circuit shall each be equipped with a factory installed liquid line filter drier with check valve, reversing valve, accumulator, and thermal expansion valves on both the indoor and outdoor coils. Reversing valve shall energize during the heat pump heating mode of operation.
 - c. Each refrigeration circuit shall be equipped with a liquid line sight glass.
 - d. Each refrigeration circuit shall be equipped with suction and discharge compressor isolation valves.
 - e. Each capacity stage shall be equipped with a 5 minute off, delay timer to prevent compressor short cycling.
 - f. Each capacity stage shall be equipped with an adjustable, 20 second delay timer to prevent multiple capacity stages from starting all at once.
 - g. All refrigeration circuits shall be provided with factory installed hot gas bypass to protect against evaporator frosting and to prevent excessive compressor cycling.
 - h. Removed from spec.
 - i. Each refrigeration circuit shall include adjustable compressor lockouts.
 - j. Removed from spec.
 - k. Lead refrigeration circuit shall be equipped with flooded condenser low ambient head pressure control to allow operation down to 0°F. Option includes on/off condenser fan cycling and adjustable compressor lockout.

l. Each refrigeration circuit shall be provided with an adjustable temperature sensor freeze stat which shuts down the cooling circuits when the evaporator coil tubing falls below the setpoint.

G. Condensers

- 1. Air-Cooled Condenser
 - a. Condenser fans shall be vertical discharge, axial flow, direct drive fans.
 - b. Coils shall be designed for use with R-410A refrigerant and constructed of copper tubes with aluminum fins mechanically bonded to the tubes and aluminum end casings. Fin design shall be sine wave rippled.
 - c. Coils shall be designed for a minimum of $10\Box F$ of refrigerant sub-cooling.
 - d. Coils shall be helium leak tested.

H. Electric Heating

- 1. Unit shall include an include electric heater consisting of electric heating coils, fuses, and a high temperature limit switch, with capacities as shown on the plans.
- 2. Unit shall include 4 stages of capacity.
- 3. Electric heating coils shall be located in the reheat position downstream of the supply fans.

I. Filters

- 1. Unit shall include 2-inch thick, pleated panel filters with an ASHRAE efficiency of 30% and MERV rating of 8, upstream of the cooling coil.
- 2. Unit shall include a Magnehelic gauge mounted in the controls compartment.

J. Outside Air

1. Unit shall be 100% outside air

K. Controls

1. Unit shall be controlled by factory mounted controls and be interlocked with BAS.

2.3 Curbs

1. Curbs shall to be fully gasketed between the curb top and unit bottom with the curb providing full perimeter support, cross structure support and air seal for the unit. Curb gasket shall be furnished within the control compartment of the rooftop unit to be mounted on the curb immediately before mounting of the rooftop unit.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting installation of rooftop replacement-air units.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.
- C. Examine roof curbs and equipment supports for suitable conditions where rooftop replacementair units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Installation, Operation and Maintenance manual shall be supplied with the unit.
- B. Installing contractor shall install unit, including field installed components, in accordance with Installation, Operation and Maintenance manual instructions.
- C. C.Start up and maintenance requirements shall be complied with to ensure safe and correct operation of the unit.

3.3 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Inspect for visible damage to compressor, air-cooled outside coil, and fans.

- 2. Inspect casing insulation for integrity, moisture content, and adhesion.
- 3. Verify that clearances have been provided for servicing.
- 4. Verify that controls are connected and operable.
- 5. Verify that filters are installed.
- 6. Clean outside coil and inspect for construction debris.
- 7. Clean furnace flue and inspect for construction debris.
- 8. Inspect operation of power vents.
- 9. Inspect and adjust vibration isolators and seismic restraints.
- 10. Verify bearing lubrication.
- 11. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
- 12. Adjust fan belts to proper alignment and tension.
- 13. Start unit
- 14. Start refrigeration system when outdoor-air temperature is within normal operating limits.
- 15. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.
- 16. Operate unit for run-in period.
- 17. Calibrate thermostats.
- 18. Adjust and inspect high-temperature limits.
- 19. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
- 20. Start refrigeration system and measure and record the following:
 - a. Coil leaving-air, dry- and wet-bulb temperatures.
 - b. Coil entering-air, dry- and wet-bulb temperatures.
 - c. Outdoor-air, dry-bulb temperature.
 - d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
- 21. Verify operational sequence of controls.
- 22. Measure and record the following airflows. Plot fan volumes on fan curve.
 - a. Supply-air volume.
 - b. Outdoor-air intake volume.
- 23. Simulate maximum cooling demand and inspect the following:
 - a. Compressor refrigerant suction and hot-gas pressures.
 - b. Short circuiting of air through outside coil or from outside coil to outdoor-air intake.
- 24. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 - a. High-limit heat exchanger.
 - b. Alarms.
- C. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension
- D. Remove and replace components that do not pass tests and inspections and retest as specified above.
- E. Prepare written report of the results of startup services.
- 3.4 ADJUSTING
 - A. Adjust initial temperature and humidity set points.
 - B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- 3.5 DEMONSTRATION
 - A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain rooftop replacement-air units. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 237433

SECTION 23 82 39 - WALL AND CEILING UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection
 - 3. Include details of anchorages and attachments to structure and to supported equipment.
 - 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 - 5. Wiring Diagrams: Power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. MARKEL, MODINE, RAYWALL, BERKO, QMARK

2.2 DESCRIPTION

- A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET

- A. Front Panel: Stamped-steel louver, with removable panels fastened with tamperproof fasteners.
- B. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
- C. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

2.4 COIL

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in corrosion-resistant metallic sheath. Terminate elements in stainless-steel, machine-staked terminals secured with stainless-steel hardware, and limit controls for high-temperature protection. Provide integral circuit breaker for overcurrent protection.

2.5 FAN AND MOTOR

- A. Fan: Aluminum propeller directly connected to motor.
- B. Motor: Permanently lubricated. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.6 CONTROLS

- A. Controls: Unit-mounted thermostat.
- B. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install wall and ceiling unit heaters to comply with NFPA 90A.
- B. Install wall and ceiling unit heaters level and plumb.

- C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- D. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 238239